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Abstract. Full-waveform inversion (FWI) is a widely
adopted technique used in seismic processing to produce
high resolution Earth models, that fully explain the re-
corded seismic data. FWI is a local optimisation prob-
lem which aims to minimise, using a least-squares ap-
proach, the misfit between recorded and modelled data.
The inversion process begins with a best-guess initial
model which is iteratively improved using a sequence
of linearised local inversions to solve a fully non-linear
problem. Deep learning has gained widespread popular-
ity in the new millennium. At the core of these tools are
Neural Networks (NN), in particular Deep Neural Net-
works (DNN), which are variants of these original NN al-
gorithms with significantly more hidden layers, resulting
in e�cient learning of a non-linear function between in-
put and output pairs. The learning process within DNN
involves repeatedly updating network neuron weights to
best approximate input-to-output mappings. There is
clear similarity between FWI and DNN as both ap-
proaches attempt to solve non-linear mapping in an
iterative sense. However, they are fundamentally dif-
ferent in that FWI is knowledge-driven, whereas DNN
is data-driven. This article proposes a novel approach
which learns pseudo-spectral data-driven FWI. We test
this methodology by training a DNN on 1D multi-layer,
horizontally-isotropic data and then apply this to previ-
ously unseen data to infer the surface velocity. Results
are compared against a synthetic model and success and
failures of this approach are hence identified.

Keywords: Deep Neural Networks, Full-waveform In-
version, Machine Learning, Computational Geophysics,
Pseudo-Spectral Inversion

1 Introduction

1.1 Preliminaries

The seismic reflection method uses artificially gener-
ated seismic waves that excite the Earth and propag-
ate through the subsurface. They are attenuated by
interactions with their medium of propagation and are
partially reflected back across a high contrasting acous-
tic impedance layer. A simple 2D two-layer example of
an acoustic forward propagation through the subsurface
is given in Fig. 1. The model contains a high acoustic
impedance layer between 1 and 1.5 km depth. When hit-
ting the interface between di↵erent velocity layers, the
wave is reflected back to the surface and recorded by re-
ceivers (geophones or hydrophones) located at or close
to the surface. The internal structure of the subsurface
can then be inferred from the total travel time of the
recorded wave.

Full-waveform inversion (FWI) is a technique which
attempts to exploit the information contained in the
reflected seismic wave-field as much as possible. It
goes beyond refraction and reflection tomography tech-
niques, which only use the travel time kinematics of
the seismic data. It honours the Physics of the finite-
frequency wave equation and uses the additional inform-
ation provided by the amplitude and phase of the seis-
mic waveform (Tarantola, 1987). FWI seeks to achieve
a high-resolution geological model of the subsurface
through application of multivariate optimisation to the
seismic inverse problem (Lailly, 1983; Tarantola, 1984;
Virieux & Operto, 2009). The inversion process begins
with a best-guess initial model which is iteratively im-
proved using a sequence of linearised local inversions to
solve a fully non-linear problem. Fig. 2 illustrates the
imaging uplift which is achievable through FWI. In situ-
ations of more complex structures, such as complicated
salt structures with convoluted ray-paths in the overbur-
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4 Learning to Invert Pseudo-Spectral Data for Seismic Waveforms

(a) Synthetic p-wave velocity model. (b) Time-step 300ms. (c) Time-step 600ms.

(d) Time-step 700ms. (e) Time-step 800ms. (f) Time-step 950ms.

Figure 1: Simple 2D two-layer model used for forward propagation of seismic waves. The red star marks the source location at
time-step 0ms. Figure (a) is the ground truth velocity. Figures (b) to (f) illustrate the propagation of an acoustic wave through (a).

den, the inversion becomes more di�cult and computa-
tionally more expensive. Fig. 3 illustrates an example of
FWI on the 2004 BP synthetic data. The zoomed sec-
tions in Fig. 3(d) clearly illustrate a lack of resolution
of FWI.

1.2 Aims & Objectives

Optimization theory is fundamental to FWI. The para-
meters of the system under investigation are reconstruc-
ted from indirect observations that are subject to a for-
ward modelling process (Tarantola, 2005). The accur-
acy of this forward modelling depends on the validity
of physical theory that links ground-truth, to the meas-
ured data (Innanen, 2014). Moreover, solving for this
inverse problem involves learning the inverse mapping
from measurements to the ground-truth which is based
on a subset of degraded best-estimated data (Tarant-
ola, 2005; Tikhonov & Arsenin, 1977). Two limitations
within inverse theory can be identified: (i) solving the
forward problem and (ii) training the data.
Choice of the numerical method used to solve the

forward problem will crucially impact the accuracy
of the FWI result. Challenging environments require

more complex assumptions to explain the physical link
between data and observations, with not necessarily
improved levels of accuracy (Morgan et al., 2013).
Secondly, the data being used to reconstruct the map-
ping of measurements for the ground-truth are not op-
timal. Very wide angle and multi-azimuth data are re-
quired to enable full inversion (Morgan et al., 2016);
this information might not necessarily have been recor-
ded in the acquisition stages of the data. Furthermore,
pre-conditioning of data is a necessity prior to FWI in
order to induce well-posedness (Kumar, Ramrez & Butt,
2012; Mothi, Schwarz & Zhu, 2013; Peng, Wang, Chaza-
lnoel & Gomes, 2018; Warner et al., 2013). However, if
done incorrectly this can degrade the inversion process
(Lines, 2014). Indeed, Lines (2014) shows how FWI re-
mains robust to both random and coherent noise, and
his work indicates that with the inclusion of multiple
data, FWI proves useful at estimating a better solution
in some situations.

Recently, deep learning (DL) techniques have emerged
as excellent models and gained great popularity for
their widespread success in pattern recognition (Cireşan,
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(a) Conventional method. (b) <10Hz FWI velocity model result.

Figure 2: Horizontal slices though the Samson Dome at 1350m. From Morgan et al. (2013).

(a) Original 2004 BP synthetic for FWI. (b) Zoomed section.

(c) 2D FWI result. (d) Lack of resolution.

Figure 3: Limitations of FWI in complicated geology. From Shin, Koo, Cha and Park (2010).

Meier, Masci & Schmidhuber, 2012, 2011), speech re-
cognition (Hinton et al., 2012) and computer vision (Kr-
izhevsky, Sutskever, Hinton, Tasci & Kim, 2015; Deng &
Yu, 2013). The use of Deep Neural Networks (DNN) to
solve inverse problems has been explored by Elshafiey
(1991), Adler and Öktem (2017), Chang, Li, Póczos,
Kumar and Sankaranarayanan (2017), as well as Wei,
Fai and Carin (2017), and has achieved state-of-the-
art performance in image reconstruction (Kelly, Mat-
thews & Anastasio, 2017; Petersen, Bölcskei, Grohs
& Kutyniok, 2017; Adler, Ringh, Öktem & Karls-
son, 2017), super-resolution (Bruna, Sprechmann &

LeCun, 2015; Galliani, Lanaras, Marmanis, Baltsavias
& Schindler, 2017) and automatic-colorization (Larsson,
Maire & Shakhnarovich, 2016).

In Geophysics, the applications of DL techniques have
focused on the identification of features and attributes
in migrated seismic sections, with few studies looking
into velocity inversion. Zhang, Frogner, Araya-Polo
and Hohl (2014) used a kernel regularized least-squares
method for fault detection from seismic records on nu-
merical experiments. W. Wang, Yang and Ma (2018)
employed a fully convolutional neural network (FCN)
to perform salt-detection from raw multi-shot gathers,
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which was found to be much faster and more e�cient
than traditional migration and interpretation. Lewis
and Vigh (2017) combined DL and FWI to improve the
performance for salt inversion, by generating a probab-
ility map from learned abstractions of the data and in-
corporating these in the FWI objective function. These
tests results showed promise for automated salt body
reconstruction using FWI. Mosser et al. (2018) used a
generative adversarial network (Goodfellow, Bengio &
Courville, 2016) with cycle-constraints to perform seis-
mic inversion, by reformulating the inversion problem as
a domain transfer problem. The mapping between post-
stack seismic traces and p-wave velocity models was ap-
proximated through DL. More recently, Yang and Ma
(2019) developed a supervised FCN for velocity-model,
building directly from raw seismograms using a DNN
architecture based on U-Net (Ronneberger, Fischer &
Brox, 2015). Their training data was obtained from
modelling of the acoustic wave equation via a time-
domain staggered-grid finite-di↵erence scheme, with nu-
merical experiments showing good potential of DL for
seismic velocity inversion.
In this work, we are re-casting the mathematical for-

mulation of FWI within a DL framework. The con-
ventional least-squares formulation of FWI can be ex-
pressed as:

min
m

J(m) = ||d� F (m)| |22, (1)

where m 2 M is the subsurface model, F : M ! D

is the forward wave equation model, and d 2 D is
the observed data. This inversion is non-linear and
ill-posed since d does not contain all subsurface in-
formation to define a velocity model explicitly (Biondi,
2006). Based on the Universal Approximation The-
orem (Hornik, Stinchcombe & White, 1989), a DNN can
be used to approximate the non-linear inverse operator
F

�1 : D ! M by a pseudo-inverse operator or mapping
function g✓ which minimizes the functional:

J(m) = ||m� g✓(d)| |2, (2)

where ✓ is a large simulated dataset of pairs (m,d) used
for learning the process function g✓ (Hastie, Friedman
& Tibshirani, 2001). In particular, based on the work of
Falsaperla, Graziani, Nunnari and Spampinato (1996),
DNN utilizing pseudo-spectral transformed data F , fa-
cilitates the learning process due to better sparsity in
the transformed domain, as compared to the time do-
main. The novelty of this approach is the combination
of both DL, signal processing and inverse theory for sub-
surface velocity inversion. This paper aims to prove this
theoretical potentially viable solution via a practical im-
plementation to a 1D synthetic model.
The structure of this manuscript is as follows. Sec-

tion 1 introduces the subject of FWI and its importance

within current workflows for seismic exploration. Limit-
ations within the current formulation are identified and
a novel approach to devise better velocity models of the
subsurface is proposed. In Section 2, mathematical fun-
damentals for FWI and DNN are derived respectively.
These are then compared and their di↵erences are high-
lighted. In particular, FWI is recast as a DL problem.
Based on the derived formulation in Section 2, numerical
results of this novel approach are presented in Section 3
and a 1D synthetic highlights the success and failures
of this approach. In Section 4, concluding remarks are
presented.

2 Theoretical Framework and

Methodology

2.1 Inverse Problem Formulation

The aim of inversion is to estimate the parameters of a
physical system based on the measurements available.
In the case of Geophysics, the physical system is the
Earth and data are the recorded wave-field.

 

Model Space 
! ∈ # ⊆	ℝ'  

Data Space 
( ∈ ) ⊆ ℝ*  

Forward Problem 
F:# → ) 

Inverse Problem 
F./:) → # 

 

Figure 4: Visual representation of the mapping between the
Forward and the Inverse problem.

The recorded wave-field is known, while the physical
properties of the medium which the wave-field propag-
ated through are the unknowns. The wave-field will be
a function of these medium properties and the function
for the forward problem can be as expressed as:

d = F (m), (3)

where F : M ! D, F 2 R(m⇥d) is the operator applied
on the model space m 2 M ✓ Rd to recover measure-
ments d 2 D ✓ Rm. The forward problem is well-posed,
that is, a unique solution exists that depends continu-
ously on the model in some appropriate topology.

The opposite to forward modelling is the inversion.
This involves making assumptions on the physical prop-
erties of the object we want to image, to be able to
compute the wave-field at any given time and location
to a certain degree of accuracy. If F is invertible, the
inverse problem is given by:

m = F
�1(d), (4)
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This aims to extract all the information contained
within the data.

2.2 FWI as Local Optimisation

Lailly (1983) and Tarantola (1984) re-cast the migra-
tion imaging principle introduced by Claerbout (1971)
as a local optimisation problem. The forward problem
is based on the wave equation, which is one of the most
fundamental equations in Physics used for the descrip-
tion of wave motion. It is a second order, partial di↵er-
ential equation involving both time and space derivat-
ives.
The particle motion for an isotropic medium is given

by:

1

c(m)2
@
2
p(m, t)

@t2
�r2

p(m, t) = s(m, t), (5)

where p(m, t) is the pressure wave-field, c(m) is the
acoustic p-wave velocity and s(m, t) is the source (Igel,
2016). To solve the wave equation numerically, it can
be expressed as a linear operator. Although the data
d and model m are not linearly related, the wave-field
p(m, t) and the sources s(m, t) are linearly related by
the equation:

Ap(m, t) = s(m, t), (6)

where p(m, t) is the pressure wave-field produced by a
source s(m) and A is the numerical implementation of
the operator:

1

c(m)2
@
2

@t2
�r2

, (7)

A common technique employed within the forward
modelling stage is to perform modelling in a pseudo-
spectral domain (F) rather than the time domain
(T ). The most common domain is the Fourier do-
main (Igel, 2016); computational implementation is gen-
erally achieved via the Fast Fourier Transform (FFT)
developed by Cooley and Tukey (1965), as it utilises
the fact that e�2⇡i/N is an N -th primitive root of unity
and allows for the reduction of computational costs from
O(N2) to O(N logN).
After forward modelling the data in a pseudo-spectral

domain, the objective is to seek to minimize the dif-
ference between the observed data and the modelled
data. The metric for the di↵erence or misfit between
the two datasets is known as the misfit-, objective- or
cost-function J. The most common cost function is given
by the L2-norm of the data residuals:

J(m) =
1

2
||d� F (m)| |2D, (8)

where D indicates the data domain given by ns sources
and nr receivers (Igel, 2016). The misfit function J can

be minimized with respect to the model parameters d if
the gradient is zero, namely:

rJ =
@J

@d
= 0, (9)

Minimising the misfit function is generally achieved
via a linearised iterative optimisation scheme, based on
the Born approximation in scattering theory (Born &
Wolf, 1980; Clayton & Stolt, 1980). The inversion al-
gorithm starts with an initial estimate of the model m0.
After the first pass via forward modelling, the model
is updated by the model parameter perturbation �m0.
This newly updated model is then used to calculate the
next update and the procedure continues iteratively un-
til the computed model is close enough to the observa-
tions, based on a residual threshold criterion. At each
iteration k, the misfit function J(mk) is calculated from
the previous iteration model mk�1 by:

J(mk) = J(mk�1 +�m0), (10)

Assuming that the model perturbation is small enough
with respect to the model, Eq. (10) can be expanded via
Taylor series up to second orders as:

J(mk) = J(mk�1 +�m0)

= J(mk�1) + �mT
k�1

@J

@mk�1
+

1

2
�m2T

k�1
@
2J

@m2
k�1

,

(11)

Taking the derivative of Eq. (11) and minimizing to de-
termine the model update leads to:

�mk�1 ⇡ �H�1rmk�1J, (12)

whereH = @2J
@m2

k�1
is the Hessian matrix andrmk�1J the

gradient of the misfit function. The Hessian matrix is a
symmetric matrix of size N ⇥N where N is the number
of model parameters and represents the curvature trend
of the quadratic misfit function.

FWI is an ill-posed problem, implying that an infinite
number of models that fit the observations exist. Well-
posedness can be introduced with the addition of Tik-
honov L2-norm regularization (Tikhonov, 1963, 3; Tik-
honov & Arsenin, 1977):

J(m) =
1

2

h
||d� F (m)| |2D + � ||m| |2M

i
, (13)

where � is the regularization parameter which signifies
the trade-o↵ between the data and model residuals.

2.3 FWI Algorithm Summary

A summary of FWI as a local optimisation problem is
given in Algorithm 1 and a schematic is illustrated in
Fig. 5.
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Algorithm 1 FWI as a local optimisation problem

(I) Choose an initial model m0 and source wavelet
s(m).

(II) For each source location, solve the forward prob-
lem F : M ! D using pseudo-spectral forward
modelling everywhere in the model space to get
a predicted wave-field dk. This is sampled at
receivers r(m).

(III) At every receiver r(m), data residuals are cal-
culated between the modelled wave-field dk and
the observed data d.

(IV) These data residuals are back-propagated from
the receivers to produce a back-propagated re-
sidual wave-field.

(V) For each source location, the misfit function
J(m) is calculated for the observed data and
back-propagated residual wave-field in order to
generate the gradient rJ required at every point
in the model.

(VI) The gradient is scaled based on the step-length
↵, applied to the starting model and an updated
model is obtained m(k+1).

(VII) The process is iteratively repeated from Step 2
until the convergence criterion is satisfied.

2.4 Deep Neural Networks for FWI

Neural Networks (NN) are a subset of tools in ma-
chine learning, which when applied to inverse problems,
can approximate the non-linear functional of the inverse
problem F

�1 : D ! M . That is, using a NN, a non-

linear mapping can be learned to minimize

||m� g✓(d)| |2, (14)

where ✓ the large data set of pairs (m,d) used for the
learning process (Lucas, Iliadis, Molina & Katsaggelos,
2018).

The most elementary component in a NN is a neuron.
This receives excitatory input and sums the result to
produce an output or activation, representing a neuron’s
action potential which is transmitted along its axon
(Raschka & Mirjalili, 2017). For a given artificial
neuron, consider n inputs with signals m and weights
w. The output d of the k

th neuron from all input sig-
nals is given by:

dk = �

0

@b+
mX

j=0

wkjmj

1

A , (15)

where � is the activation function and b is a bias term
enabling the activation functions to shift about the ori-
gin. When multiple neurons are combined together they
form a NN. The architecture of a NN refers to the num-
ber of neurons, their arrangement and their connectiv-
ity (Š́ıma & Orponen, 2003). The initial layer of nodes
m are referred to as the Input Layer. These are con-
nected to a sequence of hidden layers of neurons. The
final layer of the neurons is not a hidden layer and is
referred to as the Output Layer. Communication pro-
ceeds layer by layer from the input layer, via the hidden
layers, up to the output layer. If a NN has two or more
hidden layers, it is called a DNN. Fig. 6 shows a NN
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Figure 5: Schematic of a FWI workflow solved as an iterative optimisation process.
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Figure 6: An example of a fully connected NN with 2 hidden layers. All weights w and bias b are learned during the training phase.
The 1’s connected to each hidden layer represents bias nodes which help the NN learn patterns by allowing the output of an activation
function to be shifted. Adapted from Lucas, Iliadis, Molina and Katsaggelos (2018).

consisting of 2 hidden layers. The output of the unit in
each layer is the result of the weighted sum of the input
units, followed by a non-linear element-wise function.
The weights between each unit are learned as a result of
a training procedure.
When training a DNN, the forward propagation

through the hidden layers from input m to output d
needs to be measured for its misfit. The most com-
monly used cost function is the Sum of Squared Errors
(SSE), defined as:

J(m) =
1

2

JX

i=1

⇣
m� g✓(d

(i))
⌘2

, (16)

where d is the labelled true dataset, d(i) is the output
from the i

th forward pass through the network and the
summation is across all neurons in the network. The
objective is to minimize the function J with respect to
the weights w of the neurons in the NN. Employing the
Chain Rule and after a series of recursive formulations,
the error signals for all neurons in the network can be
recursively calculated throughout the network and the
derivative of the cost function with respect to all the
weights w can be calculated. Training of the DNN is
then achieved via a Gradient Descent algorithm, referred
to as back-propagation training algorithm (Rumelhart,
Hinton & Williams, 1985). The reader is referred to
Goodfellow et al. (2016) and citations therein for a full
mathematical formulation.

2.5 Outline for Solving FWI Using DNN

Algorithm for training of a DNN for FWI is given in
Algorithm 2 and a schematic is given in Fig. 7.

Algorithm 2 FWI as a DNN problem

(I) Setup a deep architecture for the NN.
(II) Initialise the set of weights wl and biases bl.
(III) Forward propagate through the network connec-

tions to calculate input sums and activation func-
tion for all neurons and layers.

(IV) Calculate the error signal for the final layer �L by
choosing an appropriate di↵erentiable activation
function.

(V) Back-propagate the errors (�l) for all neurons in
layer l.

(VI) Di↵erentiate the cost function with respect to
biases

�
@J
@bl

�
.

(VII) Di↵erentiate the cost function with respect to
weights

�
@J
@wl

�
.

(VIII) Update weights wl via gradient descent.
(IX) Recursively repeat from Step 3 until the desired

convergence criterion is met.

3 Numerical Example

3.1 Experiment Setup

The hypothesis we would like to prove is as follows:
“Given a seismic trace in the time domain, invert for

the seismic velocity (vp) via a DNN which transforms
the input data into pseudo-spectral domain and learns
to invert for a velocity estimate.”

3.2 Training Data

Learning of the inversion from time to pseudo-spectral
domain requires a training dataset which maps time to
Fourier components of magnitude and phase, and their
respective velocity profile. For our numeric example,
500,000 randomly generated mappings from time (T )
to Fourier components (F) for a 2000ms time window
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Figure 7: Schematic of a FWI workflow solved as learned optimisation process.

were created. The steps involved in the creation of the
synthetic are shown in Fig. 8 for a sample velocity pro-
file, and the steps involved in creating the dataset are
given as:

i Randomly create a vp velocity profile for a 2000ms
time duration, with values ranging from 1400ms�1

to 4000ms�1. The lower bound of 1400ms�1 was
selected as in normal o↵-shore seismic explora-
tion conditions, the smallest observed velocity is
that of the water which ranges from 1450ms�1

to 1460ms�1 (Cochrane & Cooper, 1991). Fol-
lowing the assumption that limestones, carbonates
and salt deposits are not present in the subsur-
face model being inverted, as these have velocity
ranges in excess of 4000ms�1, the upper bound of
4000ms�1 was selected as this is the upper limit of
velocity in porous and saturated sandstones (Lee,
Hutchinson, Collett & Dillon, 1996).

ii Calculate the density ⇢ based on Gardner’s equa-
tion (Gardner, Gardner & Gregory, 1974) given by
⇢ = ↵vp

� where ↵ = 0.31 and � = 0.25 are empiric-
ally derived constants that depend on the Geology.

iii At each interface, calculate the Reflection Coe�-
cient R =

⇢2vp2�⇢1vp1
⇢2vp2+⇢1vp1

where ⇢i is density of me-

dium i and vpi is the p-velocity in medium i.
iv For each medium, calculate the Acoustic Imped-

ance Zi = ⇢ivpi .
v Define a wavelet W. This was selected to be a

Ricker wavelet at 10Hz (Ricker, 1943). The Ricker

wavelet is a theoretical waveform that takes into ac-
count the e↵ect of Newtonian viscosity and is rep-
resentative of seismic waves propagating through
visco-elastic homogeneous media (Y. Wang, 2015),
thus making it ideal for this numerical simulation.
Based on literature results, the central frequency
of 10Hz was chosen as a nominal value to be rep-
resentative of normal FWI conditions (Morgan et
al., 2013). Beyond 10Hz would be considered to be
super-high-resolution FWI (Mispel, Furre, Sollid &
Maaø, 2019), which goes beyond the scope of this
manuscript.

vi The Reflection Coe�cient and wavelet are con-
volved to produce the seismic trace T

vii Fourier coe�cients for magnitude F(⇣) and phase
F(�) are derived based on the FFT.

3.3 DNN Architecture

Fig. 9 illustrates the NN architecture used to first in-
vert for the Fourier coe�cients from the time domain
and then invert for velocity profile. The complete work-
flow had 5 modules, with each module consisting of NN
with 5 fully-connected hidden layers. The layer dis-
tributions consisted of an input layer of 2000 neurons,
then a set of 5 hidden layers of sizes 1000, 500, 250,
500, 1000 neurons, and an output layer of 2000 neurons.
This hour-glass design can be considered representative
of multi-scale FWI (Bunks, Saleck, Zaleski & Chavent,
1995) since at each hidden layer, the NN learns an ab-
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Figure 8: Workflow for creating a pseudo-spectral synthetic trace. This was repeated 500,000 times with random parameters generated
within the pre-defined limits stated in Section 3.2 in order to create the learning dataset.
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Figure 9: Pseudo-spectral FWI DNN architecture. The highlighted section indicates the set-up employed in each of the 5 modules.
Each network has an hour-glass shape with layers of sizes 2000-1000-500-250-500-1000-2000 neurons which can be related to multi-scale
FWI. The bottom section illustrates the DNN workflow, where T is the input time domain, V is the output vp velocity and F is the
Fourier domain, with magnitude ⇣ and phase �.
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12 Learning to Invert Pseudo-Spectral Data for Seismic Waveforms

Figure 10: Four di↵erent predictions obtained from learned weights of the DNN on unseen data. The top panels are the velocity profile
reconstructions from the two NN architecture branches (F(⇣) and F(�)) and the combined result. Bottom panels are the observed and
inverted waveforms.

10.7423/XJENZA.2019.1.01 www.xjenza.org

10.7423/XJENZA.2019.1.01
www.xjenza.org


Learning to Invert Pseudo-Spectral Data for Seismic Waveforms 13

(a) Training dataset MSE over the di↵erent epochs per
DNN component. Overall performance is decreasing per
epoch, indicating that the DNN is learning to invert.

(b) Test dataset MSE over the di↵erent epochs per DNN
component.

(c) Learning Rate performance over the di↵erent epochs
per DNN component.

Figure 11: DNN performance metrics.
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14 Learning to Invert Pseudo-Spectral Data for Seismic Waveforms

stracted component of the data at a di↵erent scale. The
network employed a sum of squared errors loss function,
data batching, early stopping, L2-norm regularization
updates and executed for 200 epochs. A Rectified lin-
ear unit or ReLU function given by f(x) = max(0, x)
was used as an activation function. This is a non-
linear function which allows for back-propagation of er-
rors. When employed on a network of neurons, the neg-
ative component of the function is converted to zero
and the neuron is deactivated, thus introducing sparsity
within the network and making it e�cient and easy for
computation. The output from each parallel thread
in the flow is fed into another neural network which
learns the optimal way of combining the outputs. In
total, the DNN had 25 hidden layers. The learning or
back-propagation for each network was optimized via
an ADAM optimizer (Kingma & Ba, 2014), which is a
stochastic gradient descent-based algorithm for first or-
der gradient-based optimisation, which employs on ad-
aptive estimates of lower-order moments. The DNN was
implemented in Python 3.7, using Keras 2.2.4 (Chol-
let, 2015) and TensorFlow 1.13.1 (Abadi et al., 2016)
backend.

3.4 Numerical Results

Fig. 10 illustrates the application of DNN architecture
in Section 3.3 for a sample of unseen data and the re-
spective reconstruction. Inspection of the first 750ms
indicates that the DNN approach is able to reconstruct
both the velocity and the waveform profile with minimal
error, irrespective of the number of layers and the mag-
nitude of the acoustic di↵erence in this time range. Bey-
ond 750ms, reconstructions start su↵ering from slight
degradation. As illustrated in the velocity reconstruc-
tion of the middle figure, the inaccuracy is minimal and
ranges ±100ms�1. However, this leads to perturbations
in the reconstruction and does not allow for perfect
matching. Further inspection suggests that the main
source of error is due to the magnitude component of
the network (red). To improve this error component,
the network inverting for the magnitude component of
the FFT would need to be trained and generalised fur-
ther.
Fig. 11 shows the DNN metric performance over the

di↵erent epochs per DNN component. Fig. 11(a) and
11(b) illustrate the MSE performance for the train-
ing and testing dataset respectively. Considering the
former, the plots indicate that the network is indeed
learning, since MSE is decreasing at each epoch. Com-
paring respective DNN components between the train-
ing and the testing dataset metrics, there is evidence of
no under-fitting or over-fitting with the pseudo-spectral
learning components of the DNN architecture (net -
time mag, net mag vels, net time phase, net phase -
vel). Furthermore, there is indeed good-fit, since train-

ing and testing MSE both decrease to a point of sta-
bility with a minimal di↵erence between the two final
MSE values. On the other hand, net avg vel compon-
ent, which is learning to average out the velocity from
Fourier components, indicates symptoms of an under-
presented training dataset. Moreover, these MSE per-
formance plots indicate that the technique might suf-
fer from a compounding error issue. The two best per-
forming components are the first layer of learning for
the inversion, namely Time-to-FFT-Magnitude (net -
time mag) and Time-to-FFT-Phase (net time phase),
as their MSE performance plateaus at 10�1. In the
second phase of the inversion, which converts respect-
ive FFT components to velocities (FFT-Magnitute-
to-Velocity (net mag vels) and FFT-Phase-to-Velocity
(net phase vels)), the error plateaus are at 101, which
is two orders of magnitude greater. The final network
component sits even higher on the scale at 102. Both the
train and the test dataset show drastic decreases in the
MSE at di↵erent epoch levels. These can be attributed
to the step-wise reductions in learning rate shown in
Fig. 11(c). This varying learning rate allows the network
to move to a deeper optimisation level and approach a
more global minima for the optimisation problem.

4 Conclusions

In this manuscript we presented the investigation of dir-
ect modelling for seismic waveforms using a DNN, which
first converts data to a pseudo-spectral domain and sub-
sequently inverts for velocity profiles. Experimental res-
ults demonstrated that the use of synthetically gener-
ated data to train a DNN proves to be a viable technique
in order to learn how to invert via pseudo-spectral data.
Although inversion was successfully achieved in the nu-
merical examples presented, one branch of the DNN ar-
chitecture was lacking in inversion performance and was
resulting in a compounding error e↵ect. To improve the
overall performance of the technique, data augmenta-
tion will be considered, as it is probable that 500,000
random traces are not su�cient to train the magnitude
component of the Fourier transform for the network,
in order to achieve a desirable performance. In addi-
tion, fine-tuning of the NN architecture in the form of
in-between layer regularization, neuron drop-out during
epoch training and convolutional layers have yet to be
investigated. Moreover, in the next stage, this technique
will be used for the inversion of more interesting sub-
surface structures which have a geological relevance, to
evaluate image resolution when compared to standard
FWI, and to also consider the case of a sequential input
in the form of a Recurrent Neural Network, similar to
the work of Sun, Niu, Innanen, Li and Trad (2019), but
via a pseudo-spectral approach.
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Adler, J., Ringh, A., Öktem, O. & Karlsson, J. (2017).
Learning to solve inverse problems using Wasser-
stein loss. Iclr 2018, 1–13.

Biondi, B. L. (2006). 3D seismic imaging. Investigations
in Geophysics No. 14. Society of Exploration Geo-
physicists.

Born, M. & Wolf, E. (1980). Principles of optics. Perga-
mon Press, 6, 188–189.

Bruna, J., Sprechmann, P. & LeCun, Y. (2015). Super-
Resolution with Deep Convolutional Su�cient Stat-
istics. arXiv preprint arXiv:1511.05666.

Bunks, C., Saleck, F. M., Zaleski, S. & Chavent, G.
(1995). Multiscale seismic waveform inversion. Geo-
physics, 60 (5), 1457–1473.

Chang, J. H., Li, C.-L., Póczos, B., Kumar, B. V. K. &
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Š́ıma, J. & Orponen, P. (2003). General-Purpose Com-
putation with Neural Networks: A Survey of Com-
plexity Theoretic Results. Neural Comput. 15 (12),
2727–2778.

Sun, J., Niu, Z., Innanen, K. A., Li, J. & Trad, D. O.
(2019). A theory-guided deep learning formulation
of seismic waveform inversion. In Seg technical pro-
gram expanded abstracts 2019 (pp. 2343–2347). So-
ciety of Exploration Geophysicists.

Tarantola, A. (1984). Inversion of seismic reflection data
in the acoustic approximation. Geophysics, 49 (8),
1259–1266.

Tarantola, A. (1987). Inverse Problems Theory, Methods
for Data Fitting and Model Parameter Estimation.
Amsterdam, The Netherlands: Elsevier.

Tarantola, A. (2005). Inverse problem theory and meth-
ods for model parameter estimation. SIAM.

Tikhonov, A. N. (1963). On the Solution of Incorrectly
Stated Problems and a Method of Regularization.
Dokl. Acad. Nauk SSSR, 151, 501–504.

Tikhonov, A. N. & Arsenin, V. Y. (1977). Methods for
solving ill-posed problems. John Wiley and Sons,
Inc.

Virieux, J. & Operto, S. (2009). An overview of full-
waveform inversion in exploration geophysics. Geo-
physics, 74 (6), WCC1–WCC26.

Wang, W., Yang, F. & Ma, J. (2018). Automatic salt
detection with machine learning. In 80th EAGE
Conference and Exhibition 2018. Copenhagen, Den-
mark: EAGE.

Wang, Y. (2015). Frequencies of the ricker wavelet. Geo-
physics, 80 (2), A31–A37.

10.7423/XJENZA.2019.1.01 www.xjenza.org

10.7423/XJENZA.2019.1.01
www.xjenza.org


Learning to Invert Pseudo-Spectral Data for Seismic Waveforms 17

Warner, M., Ratcli↵e, A., Nangoo, T., Morgan, J.,
Umpleby, A., Shah, N., . . . Bertrand, A. (2013).
Anisotropic 3D full-waveform inversion. GEO-
PHYSICS, 78 (2), R59–R80.

Wei, Q., Fai, K. & Carin, L. (2017). An Inner-loop Free
Solution to Inverse Problems using Deep Neural
Networks. Advances in Neural Information Pro-
cessing Systems, 2370–2380.

Yang, F. & Ma, J. (2019). Deep-learning inversion:
a next generation seismic velocity-model building
method. Geophysics, 84 (4), 1–133.

Zhang, C., Frogner, C., Araya-Polo, M. & Hohl, D.
(2014). Machine-learning based automated fault de-
tection in seismic traces. In 76th EAGE Conference
and Exhibition 2014. Amsterdam, The Netherlands:
EAGE.

10.7423/XJENZA.2019.1.01 www.xjenza.org

10.7423/XJENZA.2019.1.01
www.xjenza.org

