
Masini, J. and Francalanza, A. (2015).Xjenza Online, 3:51–55.

Xjenza Online - Journal of The Malta Chamber of Scientists
www.xjenza.org
DOI: 10.7423/XJENZA.2015.1.07

Research Article

Typing Actors using Behavioural Types

J. Masini, A. Francalanza
Department of Computer Science, University of Malta, Msida, Malta

Abstract. The actor model of computation assists and dis-
ciplines the development of concurrent programs by for-
cing the software engineer to reason about high-level con-
currency abstractions. While this leads to a better handling
of concurrency-related issues, the model itself does not ex-
clude erratic program behaviours. In this paper we consider
the actor model and investigate a type-based static analysis
to identify actor systems which may behave erraticly dur-
ing runtime. We consider the notion of behavioural types
and consider issues related to the nature of the actor model
including non-determinism, multi-party communication, dy-
namic actor spawning, non-finite computation and a possibly
changing communication topology, which we contrast with
existing works.

1 Introduction
The actor model (Hewitt, Bishop & Steiger, 1973) is be-
coming increasingly prevalent in the development of highly-
concurrent systems and constitutes the underlying model
of several mainstream technologies including programming
languages such as Erlang (Armstrong, 2007; Cesarini &
Thompson, 2009) and Scala (Odersky, Spoon & Venners,
2011), and frameworks such as AKKA (“AKKA”, 2015) and
Cloud-Haskell (Haskell, 2015). In particular, this program-
ming model aides and disciplines the development of concur-
rent systems, facilitating the handling of concurrency-related
programming issues i.e., race conditions, dead/livelocks and
starvation, whilst shielding from intricacies that can easily
lead to errors (Haller & Sommers, 2012). Computation in the
actor model is carried out by a number of single-threaded en-
tities called actors executing concurrently within their own
local memory. The absence of shared memory forces act-
ors to interact solely by means of asynchronous message-
passing. In Figure 1 we show the basic structure of an actor,
composed of three distinct elements i) a unique actor name
used (as an address) for communication; ii) an expression
which describes the actor’s behaviour; and iii) a mailbox

that stores received messages in order (of time of arrival).
Whereas each actor may be sent messages from several act-
ors at the same time (multi-participation), input may only
be done from the actor’s own mailbox, unlike channel-based
message passing (Haller & Sommers, 2012).

i e q

Figure 1: An actor.

The actor also have the ability to dynamically change the
topology of their system by spawning additional actors dur-
ing runtime. Communication topology may also be changed
by the delegation of actor names in message parameters, al-
lowing output to previously unknown actors. Actor compu-
tation may also be non-terminating in order to implement
functionality such as that of servers or web-services. Due
to the concurrent nature of the programming model, multi-
participation and asynchrony, the messages received in an
actor’s mailbox may be different for each execution, causing
non-deterministic actor behaviour. As a result, actor-model
inspired technologies such as Erlang and AKKA extend in-
put assisted with a pattern-matching mechanism (Armstrong,
2007; Cesarini & Thompson, 2009; Odersky et al., 2011),
which allows messages to be retrieved from the mailbox in an
order other than the one received in. We emphasise that our
presentation of the actor model is derived from a high level
description as described by Agha (1986), Clinger (1981) and
instantiations of this model within programming languages
such as Erlang (Armstrong, 2007; Cesarini & Thompson,
2009).

The rest of this paper highlights the actor model of compu-
tation (Section 2) followed by an analysis of the issues (and
related existing works) to adapt behaviour types for actors,
(Section 3). We conclude by analysing related work in beha-
vioural types that concern actors specifically and close with
some final remarks (Section 4).

Correspondence to: J. Masini (joseph.masini09@um.edu.mt)

c© 2015 Xjenza Online

www.xjenza.org
10.7423/XJENZA.2015.1.07
mailto:joseph.masini09@um.edu.mt


Masini, J. and Francalanza, A. (2015).Xjenza Online, 3:51–55. 52

cl1

cl2

sr db
〈req, cl1〉

〈req, cl2〉

〈val, cl1, sr〉

〈ack, true〉

〈rep, true〉

Figure 2: Banking system.

2 Actor Systems

Consider the actor system depicted in Figure 2 consisting of
two clients, cl1 and cl2, which require credential validation
from a server, sr, where the latter in turn requestions the as-
sistance of a database service, db. Each actor is identified
by its unique actor name, and output operations are represen-
ted as directed lines with messages as labels (and we abstract
away from the actors’ expression and mailbox structures).

In Figure 2, we show the validation process for one cli-
ent; the client sends a request to the server in the form of a
tuple tagged by the label req containing its own address for
validation purposes, shown as 〈req, cl1〉 (for cl1and similarly
〈req, cl2〉 for cl2). Labels are employed to tag distinct mes-
sages for selective input from an actor’s mailbox (through
pattern-matching). Upon input, the server processes the cli-
ent’s request by extracting the client’s address and creates
a new message tagged with the label val containing the cli-
ent’s address and its own (as a reply address), 〈val, cl1, sr〉.
The server sends the latter message to the database service
and awaits a reply from the server. After the database ser-
vice inputs the server’s request, validation is carried on the
client’s name and the result is sent to the requester’s address
(in this case the server) in the form of 〈ack, true〉 specifying
the validation result. Once the server retrieves the message,
it creates a new message, 〈rep, true〉 and sends it to the client
currently being handled. It is important to note that the server
is initially unaware of the client(s). Since it acts at the inter-
mediary between it and the database service (which is aware
of the client in order to verify its identity), when the server
inputs this message it is temporarily made aware of the client
by the address in its request in order to carry out the val-
idation task with the database service and reply back to the

client with the result. Yet the system specified in Figure 2
may run into problems; the server represents a servicing bot-
tleneck since it serializes every request and temporarily halts
servicing other clients.

Consider an improved arrangement of our banking system
shown in Figure 3; instead of handling the task locally, the
server assigns the service request to a new actor which it
spawns acting as a task handler, th. This allows the server
to remain responsive to other client requests by removing the
computational load of redirecting messages back to the re-
spective clients.

In this new arrangement we use the actor’s ability to spawn
additional actors during runtime and have the spawned task
handle credential validation (of that particular client) with
the database handler and subsequently complete the service
request interaction with the client. This is achieved by the
newly spawned task handler delegating its address instead of
the server’s in the request to the database service, 〈val, cl, th〉.
It is important to note that the client is unaware that the ser-
vice request was completed by the task handler instead of the
server.

As both banking examples show, the actor model discip-
lines the implementation of a concurrent system; it forces
the software engineer to avoid the mechanisms (and possible
pitfalls) of shared memory by abstracting reasoning on the
processing components as distinct entities executing within
their own environment. In spite of this, the actor model does
not guarantee the absence of erratic behaviour during the ex-
ecution of such a system. In particular, the aforementioned
systems are still susceptible to execution errors i.e., system
crash. Consider a client which sends a boolean value instead
of its address for validation, as shown in Figure 4. When the
database service attempts validation of the client credentials

cl1

cl2

sr th db
〈req, cl1〉

〈req, cl2〉

spawn

〈val, cl1, th〉

〈ack, true〉
〈rep, true〉

Figure 3: Improved bank system.

10.7423/XJENZA.2015.1.07 www.xjenza.org

10.7423/XJENZA.2015.1.07
www.xjenza.org


53 Masini, J. and Francalanza, A. (2015).Xjenza Online, 3:51–55.

clerr sr th db
〈req, true〉 spawn 〈val, true, th〉

Figure 4: Erratic client 1.

(not shown in the figure), it will require an address but is
provided with a boolean value, thereby crashing and halting
the database service.

In Figure 5 we show another type of erratic behaviour
where the database service would receive a genuine request,
but never reply back. In such cases, the said system should
be analysed against a form of liveness property to discard
systems which get stuck.

We would like to formalise a static type system (Pierce,
2002; Cardelli, 2004) for the actor model, which would guar-
antee the absence of a select set of errors in actor systems.
However, the development of a type-based static analysis for
an actor system is non-trivial due to a number of reasons. In
order to verify each actor’s behaviour, we require to analyse
the mailbox which essentially defines the actor’s behaviour
(Agha, 1986). The messages and the order in which they
are received are the main variant on how an actor executes
upon input e.g., in our banking example, the server’s next
operation is dictated by the messages inputted from its mail-
box, which in turn depends on the current state of its mail-
box. However, since actor mailboxes may receive different
types of messages, traditional type systems for concurrency
are inapplicable, as these assume invariance with respect to
the values communicated (Marlow & Wadler, 1997).

3 Typing Actors
Behavioural types (compared to traditional types),
allow the analysis of how computation occurs by
providing notions of causality and choice (“Beha-
vioural Types for Reliable Large-Scale Software
Systems - The Foundations of Behavioural Types:
http://www.operationalsemantics.net/behaviouralwiki”,
n.d.). These have been extensively used to statistically
analyse a wide range of computing aspects, ranging from
ensuring party compatibility in protocols (Mostrous &
Vasconcelos, 2011) to correct method call ordering in
object-oriented systems (Gay, Vasconcelos, Ravara, Gesbert
& Caldeira, 2010). Despite numerous existing works,
proposed approaches are not directly applicable to analyse
the actor systems. We aim to develop our own notation
of behavioural types, whilst retaining the expressivity of
the actor model. However, this is far from trivial as we
require to consider several issues including concurrency
and asynchrony, non-terminating behaviour, dynamic actor

spawning and name delegation.

Concurrency and Asynchrony Concurrency is one main
source of complication; due to potential non-determinism,
we are forced to consider all possible execution interleavings
amongst actors. Actor communication is also asynchron-
ous, hence actors send messages irrespective of the execution
state of the target actor. Due to this combination, actors that
are sent messages by several other actors at one time (multi-
participation) do not always guarantee the specific order of
messages in the recipient’s mailbox. Recall the server in Fig-
ure 3; client cl2 can send a message to the server while it is
handling a previous request from client cl1. At the same time,
the server may receive a reply for the database service for the
request of cl1. Figure 6 shows three instances of this server’s
state described by its name, expression and mailbox contents
receptively. Figure 6 (a) describes the server’s mailbox con-
taining a request by the client, cl2, and an acknowledgement
sent back by the database service for the current client re-
quest being processed, cl1. The server’s mailbox may, from
this state: i) increase in size with the reception of an addi-
tional message, Figure 6 (b), say from another client, cl3; or
ii) decrease in size with the server inputting from its mail-
box, Figure 6 (c). In the latter case, since the server requires
to process two different forms of messages (specifically cli-
ent requests in the form of 〈req, client name〉 and database
service replies, 〈ack, boolean〉) the server employs pattern-
matching to extract messages other than the order present
in the mailbox, which complicates our static analysis of the
mailbox for each actor.

(a)

(b)

(c)

sr

sr

sr

. . . 〈req, cl2〉, 〈ack, true, cl1〉

. . . 〈req, cl2〉, 〈ack, true, cl1〉, 〈req, cl3〉

. . . 〈req, cl2〉

Figure 6: Mailbox communication structure.

Existing works, such as the work done by Honda, Yoshida
and Carbone (2008), extend the notion of (binary) session
types to a multi-party setting over a π-calculus with asyn-
chronous communication semantics. In contrast, communic-
ation is carried by means of channels which may be used

cl sr th db
〈req, cl〉 spawn 〈val, cl, th〉

Figure 5: Erratic client 2.

10.7423/XJENZA.2015.1.07 www.xjenza.org

10.7423/XJENZA.2015.1.07
www.xjenza.org


Masini, J. and Francalanza, A. (2015).Xjenza Online, 3:51–55. 54

for input and output by several entities but only up to two at
one time, while in the actor model, each mailbox may only
be inputted from by the mailbox owner and may be output-
ted by several entities at any time. Furthermore, input from
a channel is on a first-in-first-out basis, unlike the pattern-
matching input in an actor setting which allows input in a
different order than from the one received, thereby having
looser tolerances. They employ a notion of types inspired
from the paradigm of global programming - interaction types
are specified by a global description (or global types) of the
overall communication behaviour between peers and are sub-
sequently projected to extract the individual endpoint local
sessions of each peer. However, this requires the knowledge
of the communicating entities a priori, whereas in the actor
model the topology may change during runtime by the dy-
namic spawning of actors. This is further aggravated by
the possibility of delegation, as the communication topo-
logy may dynamically change to include actors unknown at
runtime.

Non-terminating Behaviour We have to consider the abil-
ity of actor-inspired technologies to specify non-finite com-
putation (Armstrong, 2007; Cesarini & Thompson, 2009;
Odersky et al., 2011). Similar to the server and database
service in our banking scenarios, actors can carry out a spe-
cific operational sequence for an unbounded number of times
e.g., the database service’s operation sequence to receive a
request for validation, process the credentials and send back
the acknowledgement. We have to ensure safety for each
possible operational sequence, and with the addition of non-
determinism, we have to consider all possible interleavings
for each operational sequence e.g., it might be that in one ex-
ecution, the request from one cl1 is processed by the server
first (and hence serviced by the database service), whereas
in another execution cl2 might be processed first. Several
works have tackled the problem of recursive behaviour (or
some form of repetition or replication of behaviour) (Honda
et al., 2008; Caires & Vieira, 2010), however in our case we
have to consider non-termination as well.

Dynamic Actor Spawning The actors’ ability to spawn
additional actors during runtime (Agha, 1986) is another is-
sue that complicates the development of our static analysis.
Our type system must support actor systems that may dy-
namically change the number of participants, similar to our
bank system in Figure 3, whilst ensuring that these actors
are still safe when interacting within the actor system. This
is substantially more complex when it is coupled with pos-
sibly non-terminating computation. It requires assure safety
in systems with (possibly) an unanticipated number of par-
ticipants which may only be known at runtime e.g., in our
banking system, since we may not know a priori the number
of clients that are going to interact with our system, we can-
not know the number of actors spawned by the server. An
extension of the work done by Honda et al. (2008) handles
the issues of dynamic participation by the parametrization of

sessions according to the number of participants (Deniélou,
Yoshida, Bejleri & Hu, 2012). However, the abstractions re-
quired for the communication constructs are rather different
from the ones in the actor model, as input and external choice
are modelled separately and messages in channels retain the
received ordering. Caires et al. present a novel notion of
behavioural types referred to as conversation types (Caires
& Vieira, 2010) to address multi-party interaction with dy-
namic interaction. The latter are similar to those found in
service-oriented computing, which are conceptually analog-
ous to the communication interactions in the actor model.
The type system is based on an extension of the π-calculus
that addresses the issue of non-deterministic communication
by labelling output and input messages, similar to the com-
munication primitives in our actor calculus. In contrast, the
actor mailbox is more dynamic from the channels employed
in the conversation calculus (Vieira, Caires & Seco, 2008),
whereby our input operation allows (a pattern-matched) se-
lection other than the first value found in the channel. The
type system employed in (Caires & Vieira, 2010) uses a gen-
eralisation of session types adapted to multi-party interac-
tions. This is achieved through the merging of local and
global types which are used to compositionally distribute
parts of the protocol between a number of participants, some
of which may be unknown at runtime.

3.1 Name Delegation
The ability to delegate a name by sending a copy of the
actor’s address as a message parameter allows dynamic chan-
ging of the communication topology. While beneficial and
allows communication to previously unknown actors, it de-
centralises control and introduces further process interleav-
ings e.g., the server in Figure 2 is previously unaware of
the clients, until they send a request specifying their ad-
dress. This is additionally complicated with the possibility
of dynamic actor spawning, as we require to analyse pos-
sible communication paths between actors which are only
known at runtime, e.g., the task handler is spawned during
runtime in Figure 3, and the database service is made aware
of it from the task handler’s request. Combined with non-
terminating behaviour, this increases the complexity of the
possible communication topology, as the number of parti-
cipants and their interactions is unknown before runtime. As
proposed by Caires and Vieira (2010), conversation types al-
low the type-checking of dynamic conversations, where a
particular slice of the conversation is delegated to an other
participant. Actors may also dynamically send addresses to
enable interaction with possibly, previously unknown act-
ors. Caires and Vieira (2010) enable dynamic participation
by modelling multiparty conversation through name passing.
This may be contrasted with the approach taken by Honda et
al. (2008), where the authors distinguish between the passing
of values and the passing of session to another entity at the
level of the calculus. In our case, delegation is more subtle as

10.7423/XJENZA.2015.1.07 www.xjenza.org

10.7423/XJENZA.2015.1.07
www.xjenza.org


55 Masini, J. and Francalanza, A. (2015).Xjenza Online, 3:51–55.

we communicate actor names as values, where some of the
actor names may even be unknown before runtime.

4 Conclusion
There has been limited work in the area of behavioural
types involving the actor model specifically (Crafa, 2012;
Mostrous & Vasconcelos, 2011). Mostrous and Vasconcelos
(2011) propose type system for a featherweight Erlang calcu-
lus, which lacks notions of internal choice and infinite com-
putation. They analyse actor systems to eliminate possible
actor impersonation which may cause malicious behaviour.
However this is not our current goal as it enforces a specific
programming approach thereby limiting actor (language) ex-
pressivity. Mostrous and Vasconcelos (2011) employs the
notion of session types to model the protocol of specific se-
quences and forms of messages. This is used to ensure that
an actor handles all the messages in its mailbox, and receives
all expected messages. However, this goes against our notion
of the actor model as i) actors are not hindered by extra mes-
sages (virtually) inside their mailbox; and ii) the absence of
a message in the mailbox does not constitute ill-behaviour,
especially when we are reasoning on non-finite computation.
In fact, an actor that does not receive a particular message
simply blocks waiting for the desired input, a mechanism
intrinsic to the actor model. Crafa (2012) proposes a work
closer to what we study, specified over an alternate actor cal-
culus inspired by Odersky et al. (2011). Their work lacks
the notion of internal choice and constructs to express some
form of repetitive behaviour. Furthermore, we contrast her
use of input semantics with (Crafa, 2012), where the author
handles communication non-determinism by specifying non-
deterministic semantics for actor input, which does not re-
flect the input specification of the actor model. Also, Crafa
(2012) employs an approach inspired by conversation types
where the behavioural types define the protocols as a se-
quence of messages, branching from external choice. In or-
der for typechecking to occur, a path is marked on each pro-
tocol describing each actor and the expected messages, and
the path markings are distributed amongst each actor com-
positionally. This approach allows Crafa to handle dynamic
actor spawning and ensure adherence of each actor’s protocol
throughout the entire actor system.

We give an in-depth study of the issues involved in the ad-
aptation of behavioural types to model actor systems. We
also contrasted them against the current literature for actors,
however we found these to be rather restrictive. We con-
cluded that current type systems are not flexible enough to
allow analysis of the actor model and we consider it as a
promising area for further research and study.

References
Agha, G. (1986). An Overview of Actor Languages. In Proc.

1986 sigplan work. object-oriented program. (pp. 58–
67). OOPWORK ’86. New York, NY, USA: ACM.

AKKA. (2015). Retrieved from http://www.akka.io
Armstrong, J. (2007). Programming Erlang - Software for a

Concurrent World. The Pragmatic Bookshelf.
Behavioural Types for Reliable Large-Scale Software

Systems - The Foundations of Behavioural Types:
http://www.operationalsemantics.net/behaviouralwiki.
(nodate).

Caires, L. & Vieira, H. T. (2010). Conversation Types. Theor.
Comput. Sci. 411(51-52), 4399–4440.

Cardelli, L. (2004). Type Systems. In Comput. sci. eng.
handb. CRC Press.

Cesarini, F. & Thompson, S. (2009). ERLANG Programming
(Media, Inc). O’Reilly.

Clinger, W. D. (1981). Foundations of Actor Semantics.
Cambridge, MA, USA: Massachusetts Institute of
Technology.

Crafa, S. (2012). Behavioural Types for Actor Systems.
CoRR, abs/1206.1.

Deniélou, P.-M., Yoshida, N., Bejleri, A. & Hu, R. (2012).
Parameterised Multiparty Session Types. Log. Meth-
ods Comput. Sci. 8(4).

Gay, S. J., Vasconcelos, V. T., Ravara, A., Gesbert, N. &
Caldeira, A. Z. (2010). Modular Session Types for Dis-
tributed Object-oriented Programming. SIGPLAN Not.
45(1), 299–312.

Haller, P. & Sommers, F. (2012). Actors in Scala. USA: Ar-
tima Incorporation.

Haskell, C. (2015). Cloud Haskell website: retrieved from
http : / / www . haskell . org / haskellwiki / Cloud %
5C Haskell

Hewitt, C., Bishop, P. & Steiger, R. (1973). A universal mod-
ular ACTOR formalism for artificial intelligence. In Ij-
cai (pp. 235–245). Morgan Kaufmann.

Honda, K., Yoshida, N. & Carbone, M. (2008). Multiparty
Asynchronous Session Types. SIGPLAN Not. 43(1),
273–284.

Marlow, S. & Wadler, P. (1997). A Practical Subtyping Sys-
tem For Erlang. In Proc. int. conf. funct. program. (icfp
’97 (pp. 136–149). ACM Press.

Mostrous, D. & Vasconcelos, V. T. (2011). Session Typing
for a Featherweight Erlang. In Proc. 13th int. conf. co-
ord. model. lang. (pp. 95–109). COORDINATION’11.
Berlin, Heidelberg: Springer-Verlag.

Odersky, M., Spoon, L. & Venners, B. (2011). Programming
in Scala: A Comprehensive Step-by-Step Guide, 2Nd
Edition (2nd). USA: Artima Incorporation.

Pierce, B. C. (2002). Types and Programming Languages.
Cambridge, MA, USA: MIT Press.

Vieira, H. T., Caires, L. & Seco, J. (2008). The Conversa-
tion Calculus: A Model of Service-Oriented Compu-
tation. In S. Drossopoulou (Ed.), Program. lang. syst.
(Vol. 4960, pp. 269–283). Lecture Notes in Computer
Science. Springer Berlin Heidelberg.

10.7423/XJENZA.2015.1.07 www.xjenza.org

http://www.akka.io
http://www.haskell.org/haskellwiki/Cloud%5C_Haskell
http://www.haskell.org/haskellwiki/Cloud%5C_Haskell
10.7423/XJENZA.2015.1.07
www.xjenza.org

	Introduction
	Actor Systems
	Typing Actors
	Name Delegation

	Conclusion

