
Tanti, E. and Francalanza, A. (2015).Xjenza Online, 3:31�35.

Xjenza Online - Journal of The Malta Chamber of Scientists
www.xjenza.org
DOI: 10.7423/XJENZA.2015.1.04

Research Article

Towards Sound Refactoring in Erlang

E. Tanti, A. Francalanza

Department of Computer Science, Faculty of ICT, University of Malta

Abstract. Erlang is an actor-based programming
language used extensively for building concurrent, react-
ive systems that are highly available and su�er minimum
downtime. Such systems are often mission critical, mak-
ing system correctness vital. Refactoring is code re-
structuring that improves the code but does not change
behaviour. While using automated refactoring tools is
less error-prone than performing refactorings manually,
automated refactoring tools still cannot guarantee that
the refactoring is correct, i.e., program behaviour is pre-
served. This leads to lack of trust in automated refact-
oring tools. We �rst survey solutions to this problem
proposed in the literature. Erlang refactoring tools as
commonly use approximation techniques which do not
guarantee behaviour while some other works propose the
use of formal methodologies. In this work we aim to
develop a formal methodology for refactoring Erlang

code. We study behavioural preorders, with a special fo-
cus on the testing preorder as it seems most suited to
our purpose.

1 Introduction

There exist a number of tools which assist with the
construction and maintenance of software. One ex-
ample of such tools are refactoring tools which auto-
mate the process of modifying a software system in such
a way that improves the internal structure of program
code but at the same time does not alter the external
functionality or behaviour of the code. Examples of
such improvements include improved readability, such
as through compliance with certain code practices, im-
proved e�ciency, reusability, extensibility and maintain-
ability (Mens & Tourwé, 2004). Also, recently (Brown,
Hammond, Danelutto & Kilpatrick, 2012, 2013), the
use of refactoring tools has been proposed to automat-
ically preform the complex task of transforming single
threaded code into concurrent code.

The growth of multicore, and even more recently
many-core, computer processors has made concurrency
a crucial consideration for developers. Taking advant-
age of the potential speedup that can be achieved using
multicore computers is one of the main driving forces for
programming concurrently. However, concurrent pro-
grams are di�cult for developers to construct and for
tools to analyse.
There exist a number of concurrency models which al-

low developers to construct concurrent programs. The
actor model is one such abstraction which eases the con-
struction of concurrent programs, providing an alternat-
ive to the currently predominant shared memory concur-
rency model. Actors are suitable for structuring highly
concurrent software systems which scale up to many-
core processors, as well as scale out to clusters and the
cloud (Cesarini & Thompson, 2009; Haller & Sommers,
2011). This has led to a steady stream of research and
industrial development, contributing to a renewed in-
terest in actors in academia (Karmani, Shali & Agha,
2009; Haller, 2012; Sutter & Larus, 2005). Examples of
programming languages which have adopted the actor
model include Erlang (Armstrong, 2007; Cesarini &
Thompson, 2009) and Scala (Haller & Sommers, 2011).
There also exist a number of actor frameworks such as
Akka which run on the Java Virtual Machine (JVM)
with APIs available for both Java and Scala (Haller,
2012) amd Microsoft's Asynchronous Agents Library for
.NET (Karmani et al., 2009). In our work we have
chosen to focus on Erlang as it is one of the most
mature actor languages (Armstrong, 2010).
There exist a number of refactoring tools for actor-

based programming languages such as Erlang, Ti-
dier (Sagonas & Avgerinos, 2009) and Wrangler (Li,
Thompson, Orosz & Tóth, 2008). The use of automated
refactoring tools is generally faster and less likely to in-
troduce mistakes than refactoring manually (Murphy-
Hill, Parnin & Black, 2009). Despite this, refactor-

Correspondence to: E. Tanti (erica.tanti.09@um.edu.mt)

c© 2015 Xjenza Online

www.xjenza.org
10.7423/XJENZA.2015.1.04
mailto:erica.tanti.09@um.edu.mt


Tanti, E. and Francalanza, A. (2015).Xjenza Online, 3:31�35. 32

ing tools are, as discussed in a survey by Murphy-Hill
(Murphy-Hill, 2007), largely underused. Amongst the
reasons for this phenomenon the people surveyed cited
lack of trust in automated refactoring tools. To counter
this problem, most of the refactorings provided, includ-
ing those by existing Erlang refactoring tools such
as Tidier (Sagonas & Avgerinos, 2009), are simple as
this is the only way to ensure that behaviour is pre-
served. Despite this, bugs may still be found in refactor-
ing tools, even after extensive testing (Li & Thompson,
2008; Soares, Gheyi, Serey & Massoni, 2010). There-
fore tools permitting more complex refactorings such as
Wrangler (Li et al., 2008) use side-conditions or asser-
tions to attempt to ascertain whether a refactoring is
valid, but do not guarantee behaviour preservation. To
mitigate the problem, such tools, including Wrangler,
are often semi-automatic, thus necessitating some hu-
man interaction and support an undo mechanism which
Mens and Tourwé (2004) state is required when a tool
cannot guarantee behaviour preservation.
In this paper, we �rst survey and discuss existing

methodologies for determining behaviour preservation
in refactoring tools in Section 2. In this section, we dis-
cuss both approximation techniques and precise formal
techniques. We then discuss in Section 3 how to apply
previous work to develop a formal behavioural theory
for Erlang and which may be applied to Erlang re-
factoring tools. Section 4 concludes.

2 Techniques used to prevent er-

roneous refactorings

In this section we give an overview of techniques com-
monly used to prevent erroneous refactorings. We �rst
present a brief overview of approximation techniques
commonly used which do not guarantee behaviour pre-
servation. We then discuss formal methodologies used
in previous work.

2.1 Approximation Techniques

A number of approximation techniques exist for determ-
ining behaviour preservation. One relatively simple and
common way to check for a refactoring's correctness is
to perform conditional checks on the code. These come
in the form of (1) invariants that should remain satis�ed
throughout the process, and (2) pre- and postconditions

that should hold before and after the refactoring has
been applied respectively. These conditions serve only
to approximate correctness as only some of the set of all
possible properties are checked. Additionally, statically
checking certain properties may be computationally ex-
pensive or impossible. An example of such work includes
Li and Thompson (2007) work checking Wrangler (Li et
al., 2008) refactorings and Drienyovszky et al.'s work
(Drienyovszky, Horpácsi & Thompson, 2010) checking

Wrangler and RefactorErl refactorings, using Quviq's
automated testing tool QuickCheck (Hughes, 2007).
However such methods are only approximations and

thus do not supply us with de�nitive guarantees. In
safety-critical software, undoing such a refactoring when
a bug is found, and thus when the damage may already
have been done, is unsatisfactory. The expense of in-
troducing a bug, even for a short time, outweighs the
possible bene�ts of refactoring.

2.2 Formal Methodologies

The problem of introducing bugs despite the precau-
tions described above could potentially be avoided if
there was a way to truly ensure that the refactoring
is correct, i.e., that behaviour has been preserved. To
this end, there has been some previous work on the use
of formal techniques which may be used to ensure be-
haviour preservation. Work carried out by Ward and
Bennett (Ward & Bennett, 1995), Li and Thompson
(Li & Thompson, 2005) and Sultana and Thompson
(Sultana & Thompson, 2008) use a number of di�er-
ent formal techniques to determine whether behaviour
has been preserved, similar to the goals of this work.
Complementary to such techniques there are also graph
transformations whereby software is represented as a
graph, and restructurings correspond to transformation
rules. Graph transformations are ideal for replacing
occurrences of poor design patterns with good design
patterns (Mens, Demeyer, Bois, Stenten & Gorp, 2003;
Mens & Tourwé, 2004). These graph transformations
must be formally proven to be correct.

2.2.1 Previous applications of formal methodo-

logies

Ward and Bennett's (Ward & Bennett, 1995) Wide
Spectrum Language (WSL) is a simple, unambiguous,
formal language with pre-proven refactorings, thus guar-
anteeing the refactoring's correctness. Translators are
then written to and from WSL to the target language.
Using an intermediate language in this tool proved to
be useful beyond the usual advantages of code improve-
ment as it may be used for reverse engineering, that
is to generate speci�cations and to translate code from
one language to another. However, as their language
is very general purpose, their translated code is often
cumbersome and the translations themselves cannot be
formally proven to be accurate.
Work (Li & Thompson, 2005) exists on proving be-

haviour preserving refactorings for the Haskell, which is
a functional programming language like Erlang. They
formalise a core subset of Haskell using a simple lambda-
calculus and a number of semantic equivalence reduction
rules. Each rule is known to preserve semantic equival-
ence, thus a refactoring made up of a combination of
these rules is also considered semantically equivalent.

10.7423/XJENZA.2015.1.04 www.xjenza.org

10.7423/XJENZA.2015.1.04
www.xjenza.org


33 Tanti, E. and Francalanza, A. (2015).Xjenza Online, 3:31�35.

However, they do not specify the equivalence: theory
used (Li & Thompson, 2005).
More recently, and more similar to our ultimate goal,

is the work of Sultana and Thompson (2008) who use
a proof assistant Isabelle/HOL to verify refactorings for
two �fragments� (Sultana & Thompson, 2008) of the pro-
gramming languages Haskell and Erlang, using pre-
conditions and behavioural equivalence. They aimed to
study the methodology for equivalence checking, which
could later be extended for larger, more realistic lan-
guages and for larger refactorings. Their preliminary
observations are promising.

3 Aims

Given the previous work on formal methodologies
for guaranteeing behaviour preservation for refactoring
tools, particularly Sultana and Thompson's (Sultana &
Thompson, 2008) work, we felt that it would be ap-
propriate to delve deeper into the topic of behavioural
equivalence. To this end, we �rst discuss formal means
of modelling the Erlang language which may then be
used to prove behavioural properties of the language

3.1 Language Formalisations

To be able to study behavioural equivalence theories for
refactoring Erlang code, we �rst construct a formal
calculus for the language. In this section we give a
review of existing actor and Erlang language calculi
which may be used or adapted for this work.
There is a series of works which build on each other

that attempt to formalise Erlang, namely those of
Fredlund (2001), Claessen and Svensson (2005), Svens-
son and Fredlund (2007) and (Svensson, Fredlund &
Earle, 2010). These formalisations occurred post-hoc,
that is after the Erlang language was created. Their
aim was to create a faithful representation of the Er-
lang compiler so as to study the behaviour of actors in
local and distributed settings and encourage discussion
on how the Erlang language may be better understood
and improved. Francalanza and Seychell (2013) model
the basic Erlang functions and also the tracing mech-
anism available in the Erlang Virtual Machine (EVM).
These previous works di�er from ours as they do not dis-
cuss behavioural theories.
Similar to our goals, Thati (2003) and Gaspari and

Zavattaro (1999, 2000) develop actor calculi to study
equivalence theories. Thati develops an actor calculus,
in this case to study the may testing preorder. How-
ever, while his aim is closest to ours, the actor language
developed in this work is essentially a variant of asyn-
chronous π-calculus with a type system enforcing discip-
line on the use of names. This means he forgoes actor
features such as mailboxes and the become primitive is
reduced to an input (without pattern matching). Gas-

pari and Zavattaro note that a lot of research, including
equivalence theories, use process algebras, mathemat-
ical languages used for describing and verifying proper-
ties of concurrent systems such as CCS and π-calculus.
However, they argue that such calculi are very di�er-
ent from the calculi developed for the actor model and
real object-oriented and actor languages. They there-
fore develop an actor calculus and Labelled Transition
Systems (LTS) that have a clean formal de�nition, like
π-calculus, while capturing essential features speci�c to
actors. They then use the language to study asynchron-
ous bisimulation equivalence.

3.2 Behavioural equivalences

Given a language formalisation for Erlang, we may
then study behavioural equivalences. Behavioural equi-
valences are used to determine in which cases two sub-
programs o�er similar interaction capabilities when run
in the context of any larger program, and thus seem like
an ideal candidate to be applied to refactoring tools.
However, there is a large number of relevant properties
which may need to be considered. This has led to the
development of many di�erent equivalences theories. An
extensive description and a lattice of known behavioural
equivalences and preorders over LTS, ordered by inclu-
sion, can be found in the literature e.g. (van Glabbeek,
2001). To determine which behavioural theory should be
used, we must �rst have a well-de�ned notion of what
a safe or acceptable refactoring is. One de�nition, as
de�ned in the original thesis about refactoring by Op-
dyke (Opdyke, 1992), is that behaviour is preserved if
for the same sequence of inputs one receives the same
sequence of outputs. However, this is not always su�-
cient, for example:

• Real-time software should preserve all temporal
constraints, and

• Embedded software has memory constraints and
power consumption which may need to be preserved
by refactoring (Mens & Tourwé, 2004).

In our case we have decided to focus solely on the
de�nition of behaviour preservation provided by Opdyke
(Opdyke, 1992) mentioned previously. This de�nition
is similar to that for the testing behavioural equival-
ences by De Nicola and Hennessy (De Nicola & Hen-
nessy, 1984). In their work De Nicola and Hennessy
state that if given two programs, A and B, behaviour is
preserved if when A passes a set of tests, then B will also
pass these tests. When applied to refactoring A would
be the program before refactoring and B the program
after refactoring. By generalising the set of tests to all
possible tests, this condition may be reformulated as:

A <∼testB i� for all T.
(
A passes T

)
implies

(
B passes T

)
10.7423/XJENZA.2015.1.04 www.xjenza.org

10.7423/XJENZA.2015.1.04
www.xjenza.org


Tanti, E. and Francalanza, A. (2015).Xjenza Online, 3:31�35. 34

In this way, we will be able to determine that the
output after refactoring has not changed and thus the
refactoring is correct.
Unfortunately this reasoning is impractical, as one

cannot run the set of all possible tests in a �nite amount
of time. We therefore plan to investigate an alternative
theory that facilitates reasoning about our testing equi-
valence. The technical development does not follow dir-
ectly from previous work (Castellani & Hennessy, 1998;
Boreale, De Nicola & Pugliese, 2002; Thati, 2003) as
certain characteristics pertaining to actor systems com-
plicate the development of our alternative preorder.

4 Conclusion

In this paper, we discussed the problem of ensuring
behaviour preservation of a program after refactor-
ing. While a number of approximation techniques ex-
ist, these cannot ensure that bugs are not introduced
when refactoring. Thus, we focus on formal techniques,
mainly behavioural equivalence, as a means of formally
proving and thus ensuring that program behaviour was
not modi�ed when refactoring.
Using the literature surveyed as a starting point, in

our work we develop a formal calculus for the Erlang
language and a behavioural equivalence technique using
the calculus which is suitable for refactoring tools. One
possible starting point is using testing equivalences by
De Nicola and Hennessy (De Nicola & Hennessy, 1984)
as it is very similar to the de�nition of behaviour pre-
servation found in the original thesis about refactoring
by Opdyke (Opdyke, 1992). As reasoning using testing
equivalence is often cumbersome, we are also tasked with
developing an alternative theory for reasoning about
testing equivalence, tailored for our Erlang calculus.

Acknowledgement

This study was carried out following the award of
a STEPS scholarship which is part-�nanced by the
European Union � European Social Fund (ESF) un-
der Operational Programme II � Cohesion Policy 2007-
2013, �Empowering People for More Jobs and a Better
Quality of Life�.

References

Armstrong, J. (2007). Programming Erlang - Software

for a Concurrent World. The Pragmatic Book-
shelf.

Armstrong, J. (2010). Erlang. Commun. ACM, 53 (9),
68�75.

Boreale, M., De Nicola, R. & Pugliese, R. (2002). Trace
and Testing Equivalence on Asynchronous Pro-
cesses. Inf. Comput. 172 (2), 139�164.

Brown, C., Hammond, K., Danelutto, M. & Kilpatrick,
P. (2012). A language-independent parallel refact-
oring framework. In Proc. �fth work. refactoring

tools (pp. 54�58). WRT '12. New York, NY, USA:
ACM.

Brown, C., Hammond, K., Danelutto, M., Kilpatrick, P.,
Schöner, H. & Breddin, T. (2013). Paraphrasing:
Generating Parallel Programs Using Refactoring.
In B. Beckert, F. Damiani, F. S. Boer & M. M.
Bonsangue (Eds.), Form. methods components ob-
jects (Vol. 7542, pp. 237�256). Lecture Notes in
Computer Science. Springer Berlin Heidelberg.

Castellani, I. & Hennessy, M. (1998). Testing Theories
for Asynchronous Languages. In Fsttcs (pp. 90�
101).

Cesarini, F. & Thompson, S. (2009). ERLANG Pro-

gramming (Media, Inc). O'Reilly.
Claessen, K. & Svensson, H. (2005). A semantics for

distributed Erlang. Proc. 2005 ACM SIGPLAN

Work. Erlang - ERLANG '05, 78.
De Nicola, R. & Hennessy, M. (1984). Testing equival-

ences for processes. Theor. Comput. Sci. 34 (1-2),
83�133.

Drienyovszky, D., Horpácsi, D. & Thompson, S. (2010).
Quickchecking refactoring tools. In Proc. 9th acm

sigplan work. erlang (pp. 75�80). Erlang '10. New
York, NY, USA: ACM.

Francalanza, A. & Seychell, A. (2013). Synthesising Cor-
rect Concurrent Runtime Monitors - (Extended
Abstract). In Rv (pp. 112�129).

Fredlund, L.-Å. (2001). A Framework for Reasoning

about Erlang Code (Doctoral dissertation, Royal
Institute of Technology, Stockholm, Sweden).

Gaspari, M. & Zavattaro, G. (1999). An Algebra of Act-
ors. In P. Ciancarini, A. Fantechi & R. Gorrieri
(Eds.), Form. methods open object-based distrib.

syst. (Vol. 10, pp. 3�18). IFIP - The International
Federation for Information Processing. Springer
US.

Gaspari, M. & Zavattaro, G. (2000). An Actor Al-
gebra for Specifying Distributed Systems: the Hur-
ried Philosophers Case Study. In Concurr. object-

oriented program. petri nets, lect. notes comput.

sci. (pp. 428�444). Springer-Verlag.
Haller, P. (2012). On the Integration of the Actor Model

in Mainstream Technologies: The Scala Perspect-
ive. In Proc. 2nd ed. program. syst. lang. appl.

based actors, agents, decentralized control abstr.

(pp. 1�6). AGERE! New York, NY, USA: ACM.
Haller, P. & Sommers, F. (2011). Actors in Scala - Con-

current programming for the multi-core era. Ar-
tima Press, California.

Hughes, J. (2007). QuickCheck testing for fun and
pro�t. In Proc. 9th int. conf. pract. asp. declar.

lang. (pp. 1�32). PADL'07. Berlin, Heidelberg:
Springer-Verlag.

10.7423/XJENZA.2015.1.04 www.xjenza.org

10.7423/XJENZA.2015.1.04
www.xjenza.org


35 Tanti, E. and Francalanza, A. (2015).Xjenza Online, 3:31�35.

Karmani, R. K., Shali, A. & Agha, G. (2009). Actor
Frameworks for the JVM Platform: A Comparat-
ive Analysis. In Proc. 7th int. conf. princ. pract.

program. java (pp. 11�20). PPPJ '09. New York,
NY, USA: ACM.

Li, H. & Thompson, S. (2005). Formalisation of Haskell
refactorings. Trends Funct. Program. 265�280.

Li, H. & Thompson, S. (2007). Testing Erlang Refact-
orings with QuickCheck. In 19th int. symp. imple-

ment. appl. funct. lang. i� 2007, lncs. Freiburg,
Germany.

Li, H. & Thompson, S. (2008). Testing Erlang Refact-
orings with QuickCheck. In O. Chitil, Z. Horváth
& V. Zsók (Eds.), Implement. appl. funct. lang.
(Vol. 5083, pp. 19�36). Lecture Notes in Computer
Science. Springer Berlin Heidelberg.

Li, H., Thompson, S., Orosz, G. & Tóth, M. (2008).
Refactoring with Wrangler, updated: data and
process refactorings, and integration with eclipse.
Proc. 7th ACM SIGPLAN Work. ERLANG.

Mens, T., Demeyer, S., Bois, B. D., Stenten, H. & Gorp,
P. V. (2003). Refactoring: Current research and fu-
ture trends. In Proc. third work. lang. descr. tools

appl. (pp. 120�130). Electronic.
Mens, T. & Tourwé, T. (2004). A survey of software

refactoring. Softw. Eng. IEEE Trans. 30 (2), 126�
139.

Murphy-Hill, E. (2007). Programmer-Friendly Refactor-
ing Tools. Other.

Murphy-Hill, E., Parnin, C. & Black, A. P. (2009). How
we refactor, and how we know it. In Proc. 31st int.
conf. softw. eng. (pp. 287�297). ICSE '09. Wash-
ington, DC, USA: IEEE Computer Society.

Opdyke, W. F. (1992). Refactoring Object-oriented

Frameworks (Doctoral dissertation, Champaign,
IL, USA).

Sagonas, K. & Avgerinos, T. (2009). Automatic refact-
oring of Erlang programs. Proc. 11th ACM SIG-

PLAN Conf. Princ. Pract. Declar. Program. -

PPDP '09, 13.
Soares, G., Gheyi, R., Serey, D. & Massoni, T. (2010).

Making Program Refactoring Safer. IEEE Softw.

27 (4), 52�57.
Sultana, N. & Thompson, S. (2008). Mechanical veri-

�cation of refactorings. Proc. 2008 ACM SIG-

PLAN Symp. Partial Eval. Semant. Progr. Manip.

- PEPM '08, 51.
Sutter, H. & Larus, J. (2005). Software and the Concur-

rency Revolution. Queue, 3 (7), 54�62.
Svensson, H. & Fredlund, L.-Å. (2007). A more accurate

semantics for distributed erlang. Proc. 2007 SIG-

PLAN Work. Erlang Work. - Erlang '07, 43.
Svensson, H., Fredlund, L.-Å. & Earle, C. B. (2010). A

uni�ed semantics for future Erlang. In Proc. 9th

acm sigplan work. erlang (pp. 23�32). ACM.
Thati, P. (2003). A theory of testing for asynchronous

concurrent systems (Doctoral dissertation).
van Glabbeek, R. J. (2001). The Linear Time-Branching

Time Spectrum I - The Semantics of Concrete,
Sequential Processes. In Handb. process algebr.

chapter 1 (pp. 3�99). Elsevier.
Ward, M. & Bennett, K. H. (1995). Formal methods to

aid the evolution of software. Int. J. Softw. Eng.
Knowl. Eng. 5 (1), 1�18.

10.7423/XJENZA.2015.1.04 www.xjenza.org

10.7423/XJENZA.2015.1.04
www.xjenza.org

	Introduction
	Techniques used to prevent erroneous refactorings
	Approximation Techniques
	Formal Methodologies
	Previous applications of formal methodologies


	Aims
	Language Formalisations
	Behavioural equivalences

	Conclusion

