
Xjenza 2005; 10, p. 8-10   
 

8

Research Article 
 
Zooming in on fullerenes  
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Summary. Carbon does not appear only as diamond and graphite. Fullerenes, forming a third family of allotropes of 
carbon (C), exist as large stable clusters of C atoms. A trivalent polyhedron P is a cubic graph which may be embedded 
on a convex 3-D surface of genus zero and a fullerene, Cn, is P with twelve pentagons, the remaining faces being  
hexagons. We introduce the concept of nut fullerenes, so called because their skeleton is a nut graph that implies one 
NBO with the charge contributed by the NBO electron being shared among all the C-centres.   The charge distribution 
over all the framework of the molecule has strong  chemical consequences.  We study the substructures in fullerenes 
and other trivalent polyhedra, that determine the presence of a NBO. Together with the symmetry group of the graph, 
they shed new light on singular graphs and polyhedra in particular.  
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The Schrödinger wave equation that yields the wave 
functions specifying the possible energies of a molecule 
is well known to most scientists.  Wave equations and 
operators are quite complex and still a healthy area of 
research.  Determining the electron ( )ε  energy levels of 
a Carbon (C) molecule is, however, relatively easy, 
owing to the Hückel Molecular Orbital (HMO) theory, 
for π − ε − systems.  This approximates the 
Schrödinger’s equation leading to a simpler one 

λ=Ax x  where A  is the adjacency 0 – 1 matrix of the 
molecular graph G whose structure is the same as that of 
the molecule with the C-centres as vertices and the σ-
bonds as edges.  In spite of the errors in the 
approximations, the values of λ  (termed eigenvalues of 
A ), for the ε - energy levels of the molecule and those 

of the vectors x  describing the ε -orbitals, that are 
surprisingly close to those obtained experimentally. 
 
Non-bonding orbitals (NBOs) present in some molecules 
are characterised by the presence of the zero energy level 
( )0λ = .  The orbital vector x   satisfies 0Ax =  and is 
said to be a kernel eigenvector of A  or of G. The number 
of linearly independent vectors x  satisfying 0Ax =  is 
said to be the nullity of A . 
 
Fullerenes, discovered in 1987, when an arc was passed 
through C vapour, form a third family of allotropes of C, 
in addition to graphite and diamond which were known 
since the reign of the alchemists.  They exist as large 
stable clusters of C atoms, each having three σ-bonds, 
forming a spherical or other convex shape. 
 

In (Yoshida et al., 1997) M Yoshida, P.W. Fowler et al 
described the rarely occurring NBOs of a subfamily of 
fullerenes by comparing the orbital patterns to the four 
NBOs of the graphite sheet.  In (Sciriha 1998a, 1998b), 
the author was motivated by the same problem for an 
arbitrary graph.  The aim was to discover the structural 
features that force a graph G to be singular. The results 
point to subgraphs called minimal configuration (mcs) 
that are present in G.  An algorithm constructs all 
possible mcs and a catalogue of the smaller mcs can be 
found in (Sciriha 1998a) and (Sciriha 1998b).  These 
studies prompt us to ask which part of the molecule of a 
singular fullerene is responsible for a particular NBO.  
Are chemical mcs possible? 
 
The characterization of the graphs with eigenvalue zero, 
known as singular graphs, has been a long-standing 
problem in the sixty-year-old history of graph theory, 
during which time the latter has emerged as an ever-
expanding prolific discipline of mathematics.  Each 
kernel eigenvector x   of G is an NBO and determines a 
well-defined core which is the singular subgraph induced 
by the non-zero entries of x .  Moreover, a core, 
corresponding to a kernel eigenvector x  in a minimal 
basis (a basis in which the linearly independent vectors 
have a minimum number of non-zero entries) for the 
nullspace of A , “grows” into a minimal configuration 
(mc) by adding vertices, which form a periphery, until 
the nullity is reduced to one.  Such a mc of nullity one is 
the subgraph of the singular graph responsible for the 
presence of the NBO x .  Thus a mc consists of a core 
and a periphery. 
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If a core happens to have nullity one, then it is a special 
mc called nut graph that needs no periphery.  The search 
for nut molecular graphs has aroused a flurry of interest 
among chemists because of the strong chemical 
implications.  Nut graphs are unique among molecules 
with one NBO because each C-centre is charge rich.  
Moreover the spin and bond-order densities are also 
spread over the whole π -framework and not on some 
substructure.  We consider the constraints required for a 
fullerene or other trivalent polyhedron to be a nut graph. 
 

 
Figure 1 

 
The trivalent fullerene has a planar embedding. Euler’s 
equation 2n f m+ = +  for solids of genus zero relates 
the number n  of C-centres (vertices) with the number m  
of σ-bonds (edges) and the number f  of faces formed by 
the σ-bonds.  Since 2 3m n= , we deduce that a fullerene 

has exactly twelve pentagons and 10
2
n⎛ ⎞−⎜ ⎟

⎝ ⎠
 hexagons.  

The smallest hypothetical fullerene is the well known 
twenty-vertex Platonic solid, the dodecahedron, 20C , 
consisting of twelve pentagonal faces embedded on a 
sphere.  The nullity of  20C  is four and it is a core so that 
each C-centre in a hypothetical 20C  molecule is charge-
rich.  The four NBOs correspond to distinct mcs found as 
subgraphs.  Figure 1 shows a 3-D picture and a planar 
embedding of 20C  as well as  G13 , one of the mcs.  The 
smallest fullerene with nullity one is 28C :1  and the 
smallest nut fullerene is 36C :14  shown in Figure 2. 
 

 
Figure 2 

 
The chemically realizable fullerenes known to date 
follow the Isolated Pentagon (IP) rule.  The smallest is 
the Buckminster Fullerene 60C , which has no NBO and 
whose spherical structure is that adopted for the football 
(Figure 3).  Adjacent pentagons in a fullerene structure 
are thought to produce too much strain to allow stability. 
 

             
Figure 3 

 
Among the large number of fullerene isomers Cn  for n  
up to 120, there are only nine singular IP fullerenes of 
which 84C : 24  has three NBOs whereas the other eight 
have one NBO.  None of them are nut graphs, although 

106C  and 114C , as examples of sporadic closed shell 
fullerenes, approach “nut graph” status having an energy 
level very close to but not exactly zero. 
 
Although there exist nut graphs of all orders 7n ≥ , their 
frequency seems to be low among graphs of low order.  
So it was quite surprising that among the trivalent 
polyhedra a considerable number were found to be nut 
graphs.  For instance, among the 1249 trivalent polyhedra 
of order 18, there are 285 nut graphs. 
 
As in many areas of science, symmetry plays an 
important role in revealing physical and chemical 
behaviour.  The symmetry group of the planar embedding 
of a fullerene enables the vertices (C-centres) to be 
partitioned into orbits each containing equivalent 
vertices.  Thus vertices in an orbit may be mapped onto 
each other by a transformation such as a rotation and/or a 
reflection, preserving adjacencies.  Moreover these 
vertices carry the same charge.  Linear algebra and 
symmetry help to determine easily some of the energy 
levels of large symmetrical fullerenes, since these are 
given by the eigenvalues of the much smaller orbit-orbit 
matrix. 
 

      
Figure 4 

 
The fullerene 70C , for instance, has 5 orbits, UWXYZ , 
containing 10, 20, 20, 10 and 10 vertices respectively as 
shown in Figure 4.  The 5 5×  orbit-orbit matrix 

1 2 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 2 0 1
0 0 0 1 2

U
W

M X
Y
Z

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 has eigenvalues 3, 2.414, 

1.414, -1.414, -1.414 which are among the ε -energy 
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levels of 70C .  The core of 70C  is the union of two 

cycles 20C  and a mc is shown in Figure 5. The study of 
the NBO of 70C  shows that the unique core may grow 
into distinct mcs present as subgraphs in the 70-vertex 
graph.  These mcs may even be cospectral. 
 

 
Figure 5 

 
Although 70C  has nullity one, it is not a mc but contains 
a mc.  If as for 70C , the entries of the NBO x  are +1, -1 
and zero, then 0Ax =  requires that even an uncharged 
C-centre has an uncharged atom adjacent to it.  Thus at 
least two peripheral vertices are adjacent, a situation 
which is not allowed by mcs.  The powerful theories of 
groups and matrices yield results interesting to chemists.  
For a highly symmetrical (vertex transitive) one orbit 
graph, there is equidistributivity of charge from the NBO 
among all the C-centres.  This requires an even number 
of σ bonds for each C-atom, thus ruling out fullerenes.  It 
follows that trivalent polyhedra with one orbit either have 
no NBOs or more than one.  Two non-degenerate energy 
levels are sufficient for multi-orbits, so that a trivalent 
graph with one NBO is multi-orbit. 
 

 
Figure 6 

 
Two interesting examples of two-orbit nut graphs are the   
trivalent polyhedron and the smallest nut fullerene   
shown in Figure 2.  The entries in the kernel eigenvector 
are -1 and 2 for both.  This demands that the structure has 
the motif shown in Figure 6 as a factor and that it is made 
up of   disjoint motifs that span the structure.  Thus   is 
spanned by two motifs whereas   has 6 factors.  More 
complex nut graphs have been identified but it is unlikely 
that they can be synthesised in the laboratory since to 
date all have adjacent pentagons. 
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