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Summary :  M a n y  materials ,  such as  blood, emuls ion  paints,  m o d e r n  hbr ica t ing  oils, plastics of 
all k inds ,  and so  o n ,  have properties which  are di f ferent  f rom those  of ordinary liquids and  sokds .  
T h e  response t o  stress of some  of these  materials  can  be spectacularly different from t h a t  of viscous 
liquids and elastic solids; they  can exhibit behaviour which  canno t  be adequately explained by the  
s imple  mathemat ica l  laws of classical theories.  T h i s  behaviour i s  the  concern of rheologists. 
T h e  unusua l  behaviour of these  materials  i s  discussed and a brief review i s  m a d e  of s o m e  fairly recent 
deve lopments  in t h e  formulat ion of mathemat ica l  equat ions  which  can  explain such  behaviour. 
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In t roduct ion 

The best example of a bouncing object is a rubber 
ball or a billiard ball. Both these are made of solid 
material and can be classified as bouncing solids. Or1 
the other hand, water and beer are good examples of 
flowing liquids. This 'normal' behaviour of solids 
and liquids can be mathematically explained by the 
classical theories of solid deformation (Hooke's law 
of elasticity) or liquid flow (Newton's law of viscos- 
ity). Here we exclude gaseous materials. 

However, the behaviour suggested by the title of 
this article is rather different from that of our daily 
experience. Indeed many modern materials exhibit 
behaviour which cannot be adequately explained by 
any of the classical theories of solid deformation or 
liquid flow. The field of study which deals with such 
behaviour is rheology. The word rheology corries 
from the Greek FEW meaning 'to flow' and it is ap- 
plied to t,he study of deformation and flow of niate- 
rials which do  n o t  con form t o  .simple mechanical  
laws. In rheology we generally distinguish between 
liquids arid solids as those materials which change, 
or do not change, their shape coritiriually when sub- 
jected to  forces however small; that is, a liquid i s  o n e  
which  changes,  while a solid i s  one  which does n o t  
change,  i t s  shape u n d e r  i ts  o w n  weight; thus, for 
example, ordinary table jelly is a solid: though when 
shaken it shows the appearance of a mobile liquid. 
Here we are in a field where the boundary between 
liquids and solids is not very sharp. Indeed certain 
materials exhibit some of the properties of ordinary 
solids arid some of the properties usually associated 
with ordinary liquids - they have both elasticity arid 
viscosity in varying degrees. 

Rheological S t u d y  Cycle 

Our aim is to construct precise unambiguous state- 
ment of all the deformation and flow properties of real 
physical continuous materials which ideally describe 
the behaviour of the material under all conditions of 
motion and of stress. One way of achieving this is to 
combine the effort of the experimental and the theo- 
retical rheologists working in close collaboration in a 
study cycle consisting of four important linked stages: 

Observation of behaviour of material experi- 
mentally; 

Formulation of mathematical laws to explain 
observed behaviour; 

Use of formulation to predict beha>-iour under 
new conditions of stress; 

Back to the laboratory to confirm (or other- 
wise) predicted behaviour. 

Prediction should be the basis on which crucial exper- 
iment is planned to t,est the validity of the new for- 
mulation. Any discrepancy between prediction and 
experimental observation requires a repetition of the 
cycle according to the following flow diagram: 

Study Cycle 

Exper imenta l  0 bservat ion 
of beliaviour 

Corifirmat ion 
of predictions 

Forrnulaf ion of 
t 

Prediction of 
hIathernatica1 laws- new behaviour 



B o u n c i n g .  L i q u i d s  a n d  Flowing  S o l i d s  

Idealized Mater ia ls  with Simple P roper t i e s  

111 our day to day espcrience with o rd i~~ary  liquids 
a ~ i d  solids we observe beliavjour ~vliich lead to tlie 
forn~ulat.ion of sirnple ~natheri~atical laws known as 
the equations o j  s tate  for the nraterials. 

Liquids 

Flow or change shape under their own weight. 
The? need to be kept in containers; 
Do not liave inherent elasticity; 

0 i fhen disturbed t l~ey settle down slowly while 
tile applied cliergy is dissipated into heat; 
Easily divided into parts or droplets which do 
not sl~oiv sharp edges. 

Equation of state is Xen-ton's law of ~~iscosity 
stress  cx rute-oj-strain or 

p = 71e: (1) 

if iricori~prcssible, allere TI is the (constant) coefficient 
of viscosity. 

Solids 
Do not flow but keep their shape, and do not 
deforrri urder their own n,eight; 

0 Elastic - sonie I.ery este~rsible (rubber), some 
not wrj-  extensible (steel); 

0 Spontaneously resume their shape after dilata- 
t.ion. The applied ener,q\- is stored as elastic 
erierg and is reco~.ered imliiediately; 

0 \\'hen broken by large forces? they show sharp 
edges (bot.tle neck effect.): 

Eqrration of st.ate is Hooke's law of elasticity s t rcss  a 
strcriu or 

p = p E .  (2) 

where p is the (corrstant) nlodulus of elasticity. 

T h r e e  Dimensional  Stressing 

In general, we t,ake EL set of Cartesian coordinate 
axes Ox1. O.Q, Ox3 using s~rffixes 1 .2 ,3  instead of 
writing Oz :Oy~O:  (see, for example, Vector Analy -  
sis. Caniilleri, 1991) to conibirie t,Jie different equa- 
tions corresponding to shearing in different planes 
and write invariant equatio~is involving the stress t.en- 
sor pik ( i ;  X: = 1,2! 3) and the rate-of-strain tensor e i k  

or strain te~lsor Eik.  
Equatioris of state (1) arid ('2) then take Cartesian 

tf!~lSOr form 

Jn both cases the ecpratioris of state are linear al- 
ycbraic relations irivolving second-order synimctric 
(p12=p21. etc.) tensors and physical constants. Hence 
each of relatiorts (3) represent nine equat.ions, of 
\vl~ich ot~lj. six are differelit. U s i ~ ~ g  tliesc simple equa- 
tions crlgiricers have niarlaged over tile >.ears to build 
ships, bridges, darns. cathedrals, towers, etc. 

Mater ia ls  wi th  Complicated P roper t i e s  

Tl~ere are othcr materials whose behaviour under 
stress is spectacularly different from that OF classical 
idealized r~iaterials. The follon-ing are a few esam- 
ples of easily observed violations of the more familiar 
bel~aviour. 

(a) Blood is non-Iiewtonian 
v i w o ~ i t . ~  whrn 1mlrma.I flow* rhror~yh 

(b) Xlerringt.on Effect (c) IVeissenberg Effect 
Rubber Solution is non-Sewtonian A 

IYliile the viscosity of blood plasma is constant 
for all rates of flow. the viscosity of "whole 
blood" is 7 1 0 1  constant but decreases as the 
rute o f f l o w  irlcreases. Also, wlrer~ blood flows 
tlirougli a capillary tube the red ceIls migrate 
towards t.lre axis of tlie tllbe reducing the ef- 
fccti1.e viscosity. This is very fortu11at.e in- 
deed. otliern-ise we would need far more power- 
ful heart pumps. 

hlerrirlgton (1943) observed that rubber solu- 
t ion iswells radially o~rlluards' o n  emerging 
jrorrr a capillary tube whereas Xewtonian liq- 
uids exhibit tlie opposite efTect knon-n as 'vena 
coritracta'. 

IYeissenberg (19-17> 1915, 1950) ol~served that, 
t1:hen certain liquids (such as sn.eet.ened con- 
densed ~riilk) urc sheared between rolalirrg 
coazial cylinders they  tend t o  m i g ~ a t e  to -  
wards thc inner- cylinder resulting in a higher 
level there. IVhen stirred with a rod coriclenced 
illilk tends to 'cli~rrb' the rod; it has been sug- 
gested to use condeiised n d k  to catch mice? 
since the poor mouse nrliicli finds itself in a shal- 
low pool of such a liquid would get more elltan- 
gled the harder it, t.ries to get aww. On the 
other hand, n-lien a Kewtoiiian liquid is stirred 
with a rod it tends to ruove away frorn t.lie rod 
leal-ing a hollow there. 

Again whcn the stirring rod is  removed cer- 
rain liqlrids, suelr as  polymer ~ o l u t i o n s ,  tend 
t o  'recoil back' and part o j t h e i r  de jormat ion  
is  gradually recovered - they are said to 1ial.e 
an elastic memory.  Kewtonian liquids would 
continue to rotate until all e l lerg  is dissipated 
into heat. 
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(e) A rnaterial known as 'bouncing putty' looks arid 
feels very rriucl~ like ordinary plasticine. Yet it 
is mobile enough to flow under its own weight 
and must therefore be classified as a liquid. A 
piece of this material flows into a pool with a 
smooth upper surface within minutes of being 
placed on a table, yet it may be bounced 011 

the table like a rubber ball with no visible flat- 
tening at its point of contact with the table. It 
shows very different response to slow and to 
rapid shearing; when handled slowly it flows 
even through a fine rriesh, but when snapped 
suddenly it feels elastic and shows sharp edges 
(bottle neck effect) where it breaks. 

In fact we have a whole spectrurn of materials which 
exhibit both viscous and elastic properties in varying 
degrees. In formulatirig the equations of state, here 
we consider a model of the material called a d isperse  
s y s t e m  which in tlie simplest forni consists of two 
uniform component materials. 

Disperse Systenis hlodel 

Eisst ico-vixous Liquid Viscc-eln-tic Solid 

at  zlery small, steady (time-independent) rates of 
shear it behaves as a liquid of viscosity 710 given by 

Taylor (1932) found that, again a t  very small, 
steady rates of shear, the viscosity of an emulsion 
of liquid droplets of viscosity 7': with concentration 
c, in a liquid of viscosity 11 is 

The equation of state for these 'hypothetical liquids' 
is 

Pzk = 2 ~ 0 e r k ;  (6) 

which is still a linear algebraic equation and the liq- 
uids are characterized by one physical constant q0 
which is, of course, a function of tlie constants of the 
component materials and the coricentratiori c. Kote 
that (4) is a special case of (5) as rl/rll - 0. The 
models of Einstein and Taylor exhibit no elasticity of 
shape at  all (all coriiporieiit materials assuiried inelas- 
tic) so that when all deforming forces are suddenly 
released such materials retain their shape without re- 
coil. 

The first material, the disperse phase. which may 
be solid or liquid, is made up of small bits dispersed 
a t  random in the second, the continuous phase, which 
may also be liquid or solid arid which fills all the space 
between the dispersed bits of the first phase. If both 
phases are liquid they are taken to  be immiscible. 
one of \vliich or both having elastic properties and 
the dispersion is referred to as an emulsion 

If the continuous phase of the dispersion is a liq- 
uid arid the dispersed phase consists of solid parti- 
cles it is referred to as a suspension.  In this case 
the dispersion as a whole is essentially a liquid arid 
we talk about an elastico-viscous liquid. On the 
other hand. if the continuous phase of the dispersion 
is a solid with dispersed cavities filled with viscous 
liquid. the dispersio~i as a whole is essentially a solid 
and we talk about a visco-elastic solid. 

Elastico-Viscous Liquids 

For our purpose here it easiest to consider 
mainly dipersioris having contiriuous liquid phase 
i.e. elastico-viscous liquids. The case of esseritially 
solid dispersions or visco-elastic solids follow analo- 
gous arguenients. 

Slow, S t e a d y  R a t e s  of Deformat ion 

Einstein (1906, 1911) considered a suspension of in- 
elastic solid spherical particles, of concentration c, 
in a Newtonian liquid of viscosity 71 arid found that 

Small ,  Variable Deformat ion 

Frijhlich arid Sack (1046) considered a suspension of 
Hookean elastic solid spheres of elastic rnodulus p 
uniformly dispersed in a Newtonian liquid of viscosity 
11: and sho~ved that, at  small val-iable rates of shear, 
the equation of state relating the viscous stress pi,, to 
the rate-&train eik takes the form 

with ( X I  > X2 > 0): where 770 = ?](I + 2 . 5 ~ ) ~  

It is to  be noted that the equations are xion- linear 
differential equations involving rate-of-change with 
respect to time, i.e. they are time-dependent. The 
class of liquids characterized by (7) are referred to 
as liquids of t y p e 1  since the equation involves first 
derivatives. It is characterized by three physical con- 
stants: a relaxation time X I  . a retardation tinie X2, 
arid viscosity 710. These materials exhibit both vis- 
cous arid elastic properties. On the application of 
external stresses the suspended elastic particles will 
now be deformed absorbing some energy, but the de- 
forrnatiori requires time which depends on tlie viscos- 
ity of the continuous liquid phase. 011 removal of the 
external stress. the particles require time to recover 
their undeformed shape and release the stored elastic 
ener3.  

Oldroyd (1053). showed that the properties of an 
idealized dilute emulsion with liquid droplets replac- 
ing the elastic spheres are quantitatively the same 
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as for the correspondi~~g suspensio~i. The investiga- 
tions were extended by Oldroyd (1935) to include the 
effect of an interfacial film everywhere between the 
boundaries of the two phases, such as that introduced 
when a trace of stabilizer is added to an eniulsion. He 
found that ,  if  the film has any inherent elasticity, the 
equation for p,k (again for slow. variable deformation) 
takes the for111 

Thus for the scalar density p me have 

~vliere v, (= q.t92,2l3) is the velocity of the element 
and summation is understood over the repeated suffix 
i according to the usual summation convention. 

The derivative D/Dt  measures the rate of change a a2 
(1 + h, + uls) pi* = 2% (1 + eik rvitli respect to time relative to a moving coordinate 

(8) 
possibly with rnore additional derived t,errns on each 
side. The class of liquids characterized by (8) are 
referred to as liquids of t y p e  2 since the equation 
involves second derivatives. These liquids are char- 
acterized by 5 physical const,ants X I !  &,  ~ 1 :  ui and 110. 
Liquids characterized by an ecluatiori of the form 

where the constant 70 is the limiting viscosity at  srnall 
rates of shear and ( ~ 1 :  P 1 a Z I P Z I .  . . PN are con- 
stants such that  a s  and p,v do not both vanish, are 
referred t,o as liquids of t y p e  A;. Oldroyd (1962) 
sliowed that in general, a dilute ernulsio~i consisting 
of a liquid of type 111 dispersed in a liquid of type 
IV. with constant interfacial tension between the two 
components is an elastico-viscous liquid of type (at 
most) 1 + 2111 + 3A-. 

Linear differential equations of the fornls (7) to  
(9) may also be simulated by meclianical rnodels con- 
sisting of springs and daslipots in series and i11 paral- 
lel - see, for example, Hydrodynamics of Elastico- 
Viscous Liquids, Ca~iiilleri (19G5). 

It is rioted that for slow steady shearirig equa- 
tions (7) t,o (9) would reduce to the Newtonian vis- 
cosity relation (6). 

Finite Rates of Deformation 

In obtaining the equations of state (7) to (9) we re- 
stricted attention to small  variable rates of defor- 
rnation and it is found that these equations are riot 
adequate to describe beliaviour at  finite rates of de- 
forniatiori. Any quantity associated locally with a 
fluid, such as the temperature of the fluid, or a stress 
or rate-of-strain coniponent. changes iri general at  a 
different rate according to whether we measure it a t  
a fixed point in space over an interval of time. or 
rneasure it in a certain rnacroscopic elernent of fluid 
(which is rnoving in space) over the same instant of 
time. In ordinary hydrodyriarnics we distinguish be- 
tween the rate of change with respect to time a t  a 
fixed point ( a / B t )  arid the rate of change with re- 
spect to time following the material particle (D/Dt) .  

sys tem xhose origin is rnoving wit,h the material par- 
ticle. It allows for the translation of the material 
element and is sufficient when differentiating scalar 
quantities. \Vhen it comes to vector or tensor quan- 
tities (which are associated with directions) we must 
take a rate of change of the components relative to 
a rotating coordiate sys tem which is moving and 
rotating with the material element. 

A tirne derivative of a tensor pik that corrects for 
the trarislation as well as the rotation of the fluid ele- 
riierit is Oldroyd mater ia l  derivative D / D t ,  ,' =lven 
by (Oldroyd, 1938) 

where the linear nlotiori of the fluid element is ac- 
counted for by its velocity vector 2 5  and the angular 
 notion bv the vorticity tensor u , k  measured by 

A time derivative of a tensor p,k relative to a con- 
vected coordinate systenl which nioves, rotates and 
defornls with the nlaterial is Oldroyd convected 
derivative V / V t ,  defined by (Oldroyd, 1930) 

This corrects also for the straining of the material 
\vhich is measured by the rate-of-strain tensor 

For a tensor p,k. the derivative V / V t  differs from 
D / D t  only in the addition of sirnple products of p,k 
a rd  e,k. It can be shown (see Tensor  Analysis ,  
Caniilleri, 1999) that we may obtain universally valid 
constitutive equatioiis of state - that is, equations 
with a physical significarice for the inaterial indepen- 
dent of any particular frame of reference arid inde- 
pendent of the motion of the rnaterial as a whole 
iri space - if we replace the partial time-derivative 
a / a t  in equations of state (7) to (9) by the convected 
time-derivative V / V t  or the material time-derivative 
D / D t ,  both of which are eligible for inclusion into 
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constitutive equatioris. The sirnplest possible gener- 
alization of equation (9) which is valid for all coridi- 
tions of niotio~i and stress takes tlie for111 

D D2 
(1 + a l E  +m5 + . . .  

The equations of state (7) to (9) are linear differential 
equations and liquids characterized by them are often 
referred to as l inear elastico-viscous liquids. But. in 
view of relation ( l l ) ,  the material derivative destroys 
the linear nature of equation (13). The first material 
derivative i~wolves simple corltracted products of the 
rate-of-strain with itself and with stresses, and higher 
material derivatives involve products of higher degree 
in stress arid rate-of-strain taken together. Other gen- 
eralizations of equation (15) involve such products of 
degree up to (N + 1). In particular tlie most general 
constitutive equation of state for liquids of type 1 is 

first suggested by Oldroyd (1938): which involves 
eight physical constants characterizing a wide spec- 
trum of materials. The corresponding generalization 
for liquids of type 2 which include third-order prod- 
ucts in stresslrate-of-strain taken together was ob- 
tained by Camilleri (1963) and irivolves no less than 
thir ty  physical constants. 

The class of liquids characterized by constitutive 
equations of state (16) are capable of exhibiting the 
kind of I~OII-Newtonian behaviour that is often ob- 
served in real liquids as. for example, a variation 
of apparent viscosity with the rate of steady shear- 
ing (Oldroyd. Strawbridge k Toms. 1930)- the TVeis- 
senberg climbing effect (Lux-TTTeiner k Scoenfield- 
Reiner, 1952): a distribution of normal stresses cor- 
responding to an extra tension along the streamlines 
(Roberts, 1934): a i d  secondary transverse circulatory 
flow in tlie section between riori-intersecting cylinders 
of various shapes (Camilleri & Jones. 1963, 1966). 

Visco-Elastic Solids 

In an analogous way. dispersions which are essentially 
solid. having a solid continuous phase in which splier- 
ical cavities. filled with liquid or with solid of another 
material. are characterized by a single shear modulus 
110 if examined in equilibrium or at  sufficiently small 
rates of shear. 

hlackeiizie (1930) considered tlie case of a coritin- 
uous phase with shear rnodulus / L  and bulk modulus 

K arid found that the presence of scattered small holes 
results in a disperse system of shear niodulus 

Hashin (1935) considered the presence, instead, of 
scattered small rigid spherical inclusioris which re- 
sulted in an increased shear modulus 

Oldroyd (1936) found that for small variable rates of 
shear the equation of state for visco-elastic disperse 
systems is of the form 

replacing the equation p,k = pOELI; .  representing 
Hooke's law, which in this system is valid only in 
equilibrium. Equation (17) may be generalized to a 
universally valid constitutive equation by replacing 
the partial derivatives with the material or convected 
derivatives, the sirnplest generalization being 

To conclude, we shall expect a wide range of ma- 
terials to be characterized by differential constitutive 
equations of the forni (15) representing what is fun- 
da~ileritally liquid behaviour. or of the forrn (18) r e p  
resenting basically solid behaviour. The physical con- 
stants in the equations will distinguish between dif- 
ferent materials of the sanie class. 111 steady flow 
at  small rates of shear or at  constant  small shear 
(that is, at  constant shear stress in either case). the 
differential equations will reduce to those for the cor- 
responding classical idealized material. 
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