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Summary: In the early eighteenth century a priority dispute erupted. The President of the Royal Society, Sir Isaac 
Newton, and one of the foremost continental philosophers at the time, Gottfried Wilhelm Leibniz, both claimed 
priority in the discovery of the differential and integral calculus. We now credit Newton as the first discoverer of 
the calculus, Leibniz being a close second. This review, based on a public lecture delivered by the author in 
October 2000, will examine the historical and mathematical aspects of the dispute. 

England in the early eighteenth century saw the 
beginning of perhaps the most famous dispute in the 
history of Mathematics. In truth, its seeds were sown 
in the previous century. One of the contenders, Sir 
Isaac Newton, then President for Life of the Royal 
Society, had an important matter in hand and delayed 
the dispute by nearly three decades. But before we go 
into the dispute let us familiarise ourselves with the two 
main characters. 

Two lives 
Sir Isaac Newton was born prematurely in a manor 
house in Woolsthorpe, Lincolnshire on Christmas Day 
1642 (Julian calendar), the same year Galileo died. His 
father died before he was born. His mother remarried 
the Reverend Barnabas Smith, an elderly rector. 
Newton was born into a family of some means, which 
were certainly increased by this marriage. However, 
Newton was sent to live with his maternal grandparents. 
He returned to his maternal home when his stepfather 
died eight years later. At the age of 12, Isaac attended 
the grammar school at Grantham, where he lodged with 
an apothecary, Mr. Clarke. That may have been his 
source of interest in alchemy. 

He joined Trinity College, Cambridge, in 1661 at the 
age of 19. Three years later he was elected a scholar of 
Trinity, a year after which he became a Bachelor of 
Arts. In 1665 the plague reached Cambridge and 
Newton temporarily returned to his native Lincolnshire 
to avoid it. The three years he spent in his family home 
in Lincolnshire are known among Newtonian scholars 
as the anni mirabiles. There he discovered the Binomial 
Theorem to any power and in November 1665 the 
Differential Calculus, or as he referred to it, the Method 
of Fluxions. The Integral Calculus, or Quadrature of 
Curves, he discovered in May 1666, after discovering 
the Theory of Colours. The Law of Gravity and the 
orbits of planets followed. 

After his return to Trinity College in the spring of 1667 
he was elected a Fellow. Two years later, at the age of 
26, he became the Lucasian Professor of Mathematics. 

Newton secretly pursued the study of alchemy and 
theology, apart from mathematics and dynamics. 

Meanwhile his discoveries were as yet unpublished. He 
sent to John Collins, a mathematical impresario, the De 
Analysi, a document in which he set out his results on 
infinite series and the calculus. We owe the belated 
printing of Newton's magnum opus to the astronomer 
Dr. Edmund Halley. He visited Newton in 1684 and 
asked him what course a planet would follow if the 
force of attraction between sun and planet followed an 
inverse square law. Newton answered "an ellipse", and 
sent him the proof the following November in a paper 
called De Motu. This paper was 'expanded into the 
Principia which was published on the 5th of July1686. 
Significantly, he did not derive any of his results by 
means of his calculus. 

In 1696 Newton became Warden of the Mint. He 
undertook his new position with zeal and was an able 
administrator. His duties included the persecution of 
forgers. In 1700 he was appointed Master of the Mint. 
In 1701 he gave up the Lucasian Chair. In November 
1703 he was elected President of the Royal Society. 
And here we leave Newton for a while and proceed with 
a brief life of Leibniz '. 
Gottfried Wilhelm Leibniz was born in Leipzig in 1646. 
His father Friedrich, was a professor of moral 
philosophy at Leipzig. He died when Gottfried was six. 
His mother Catharina Schmuck, was Friedrich's third 
wife. He entered school when he was seven. There he 
learned Latin and Greek, the knowledge of which he 
supplemented by further reading. At the age of fourteen 
he entered the University of Leipzig where he studied 
philosophy and mathematics. He was also taught Latin, 
Greek and Hebrew. He was awarded a bachelor's 
degree in 1663. 

Leibniz then proceeded to Jena. There the professor of 
mathematics, Erhard Weigel, who was also a 
philosopher, influenced Leibniz. Back in Leipzig he 
obtained a master's degree in philosophy. A few days 
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later his mother died. After being refused a doctorate in 
law, ostensibly because of his youth, he went to the 
University of Altdorf. He received his doctorate in 
1667. 

He then went to Frankfurt, where he lived for a few 
years under the employ of Baron Johann Christian von 
Boineburg. His task included that of a secretary, 
librarian, and a lawyer. There he pursued various 
projects of a scientific, literary and political nature. He 
also served as lawyer to the courts of Mainz. 

In 1671 he published a book on Physics, Hypothesis 
Physica Nova. In 1672 Boineburg sent Leibniz on a 
diplomatic mission in Paris. While in Paris he availed 
himself of the opportunity to make contact with French 
mathematicians and other intellectuals. Christian 
Huygens, astronomer and mathematician, was perhaps 
the most important contact. 

The following year, Leibniz accompanied Boineburg's 
son and nephew on a mission to London. While in 
London, Leibniz met many English intellectuals, 
including Robert Hooke, Robert Boyle and John Pell. 
He was also elected a member of the Royal Society after 
giving a demonstration of his as yet unfinished 
calculating machine. It was at this time that Leibniz 
became acquainted with John Collins and Henry 
Oldenburg 

Back in Paris, Leibniz studied extensively mathematics 
under Huygens - his visit to London convinced him that 
his knowledge of the subject was not adequate. After 
various efforts in formulating the differential and 
integral calculus in November 1675 he wrote a 
manuscript where he used the $ f (x)& notation for 
the first time. In autumn 1676 he discovered the now 
familiar result d(xn) = nx"-'dx for integral values of n. 

In 1676 Leibniz revisited London. He visited Collins 
and, without the author's knowledge, was shown 
Newton's paper De analysi. Although he took thirteen 
pages of notes on series he did not jot one note on the 
calculus. It is possible that he may have already 
discovered his method of calculus. The President of the 
Royal Society, Henry Oldenburg and Collins, who 
marvelled at Leibniz' mathematical abilities, persuaded 
Newton to correspond with Leibniz in the same year. 
He sent two letters, the Epistula prior and the Epistula 
posterior. In the former Newton expounded his theory 
of infinite series and the binomial theorem. In the 
second letter Newton expounded further the theory of 
infinite series. He "discussed" the calculus in a discrete 
way and in anagrams. He revealed nothing but simply 
indicated that he had a method of finding tangents and 
areas. Then Oldenburg died and the correspondence 
ceased. 

In 1676 Leibniz was offered the post of librarian by the 
Duke of Hanover. He reluctantly left Paris in October 

to Hanover via London and Holland, where he met 
Spinoza. Hanover remained his home until his death, 
though he travelled extensively. 

Another important achievement by Leibniz is the 
invention of the binary system and arithmetic in 1679. 
He also discovered determinants while trying to solve 
systems of linear equations. The latter discovery 
remained unpublished. Throughout the 1680's he 
composed and published several philosophical works. 

In 1684 he published Nova Methodus pro Maximis et 
Minimis, itemque Tangentibus ... in Acta eruditorum, a 
German journal he helped to found. In this paper he 
described the Differential Calculus, but gave no 
derivations for his results. In this paper Leibniz uses 
differentials dx, etc. rather than derivatives. Two years 
later in the same journal he published De Geometria 
Recondita et Analysi Indivisibilium atque Infinitorum 
where he expounded his Integral Calculus. There was 
no reference to Newton in either papers. But Newton 
was at the time busy with the publication of his 
Principia and the dispute was postponed. 

The seeds of contention are sown 
It is relevant to a history of the Newton-Leibniz dispute 
to examine how Newton came to allow his De analysi 
out of the confines of Cambridge. In 1669 Isaac 
Barrow, who at the time was the Lucasian professor of 
mathematics, received a book from John Collins. He 
showed Newton the book, which was entitled 
Logarithmotechnica by Nicholas Mercator. In the book 
was the series for log , (1 + x), a series which Newton 
had already found. Barrow, without Newton's 
knowledge, sent Collins the De Analysi. The paper 
dealt with infinite series, quadratures and his method of 
fluxions. Collins sent back the paper only after he had 
the manuscript copied. Collins, without the author's 
permission, sent the manuscript to various 
mathematicians both in England and abroad. This is the 
very document which Leibniz saw on his second visit to 
Collins in 1676. 

Newton and Collins met for the first time in November 
1669. The two men kept up a correspondence until 
1672. Newton then became more interested in alchemy. 
Although Newton would not have approved of Collins 
spreading his work throughout Europe, this worked in 
his favour. Collins died in 1683 after suffering for 
seven years from a terrible illness. In 1708 his papers 
were passed to William Jones. The De analysi was 
among them. While the priority dispute raged these 
papers were used by Newton to support his claim. 

As mentioned above, Leibniz published two papers on 
the differential and integral calculus in 1684 and 1686, 
respectively. His first paper was referred to by his allies 
Johann and Jacob Bernoulli as 'an enigma rather than an 
explication'. He did not refer to Newton's work at all. 
He mentioned neither the Epistula prior nor the Epistula 
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posterior. The De Analysi, which he perused at leisure 
when he visited Collins in London in 1676, he 
conveniently forgot to mention. But Halley's visit to 
Newton and the preparation for publication of the first 
edition of the Principia delayed the dispute. 

Nicolas Fatio de Duillier (1664 - 1753) was a Swiss 
mathematician and a prot6gC of Newton. Fatio, whom 
Newton had known since 1689, was probably the 
closest friend Newton ever had. Their relationship 
cooled somewhat by 1693, the year when Newton had a 
mental breakdown. Yet in his treatise A Double 
Geometrical Investigation into the Line of Quickest 
Descent published in 1699, after asserting his 
independent discovery of the calculus, he wrote that 
Newton was the first to discover the Calculus and 
accused Leibniz of taking advantage of Newton's 
modesty 

Leibniz was not provoked. He wrote that learned men 
should not fight like fishwives, and that Newton would 
not approve of such rubbish that Fatio wrote. He added 
that Newton and himself were original masters of the 
calculus, as their success in solving problems on 
maxima and minima has shown, and which Newton 
had already demonstrated in 1687, that is, after Leibniz' 
1684 paper! 

Earlier in 1693 Leibniz sent a letter to Newton which 
was very courteous. Newton answered in similar terms, 
and wrote that he valued very highly his friendship with 
"one of the leading geometers of this century" and 
begged his censure on any point, since "I value friends 
more than mathematical discoveries." He also sent him 
a general solution using fluxional notation. This does 
not mean that Newton was not anxious about losing 
priority in the discovery of the calculus. In the first 
edition of the Principia (July 1686), Newton, perhaps 
troubled by the knowledge that Leibniz had also 
discovered the calculus, asserted that he corresponded 
with "that most excellent geometer, G.W. Leibniz" and 
that Leibniz communicated his method which hardly 
differed from Newton's "except in his forms of words 
and symbols". By the third edition, as the dispute 
progressed, all reference to Leibniz in the Principia 
disappeared. 

In 1699 Leibniz criticised, anonymously, David 
Gregory's demonstration of the catenary. He found an 
error and claimed that the fault in the demonstration lay 
in the shortcomings of Newton's fluxional method. 
Leibniz clutched to every straw at hand to defend his 
claim to priority. His habit of launching his attacks 
anonymously, however, only earned him derision. 

In 1704 Newton finally published De Quadratura as an 
appendix to the Opticks, although in 1693 John Wallis 
published a brief account of fluxions in his book 
Geometry. In the Advertisement he mentions a letter 
which he wrote to Leibniz in which he describes "a 

Method by which I had found some general Theorems 
about squaring Curvilinear Figures". The following 
year, in the journal Acta eruditorum, Leibniz reviewed 
under cover of anonymity Opticks in which he 
compared Newton to Honor6 Fabri, a man known for 
plagiarism. Fabri composed his geometry Synopsis 
geometrica (1669) by using a work by Francesco 
Cavalieri and by substituting different terminology 
claimed to have developed a new method. Similarly, 
according to Leibniz, Newton had used fluxions rather 
than differentials. Despite Leibniz' denial that he had 
no intention of accusing Newton of plagiarism his 
intention was obvious. 

In 1710 John Keill in a paper on centrifugal forces in 
the Philosophical Transactions asserted Newton's 
priority and charged Leibniz with plagiarism. This 
accusation ushered in the second phase of the 
controversy. However, before we delve straight into an 
account of the controversy, let us examine our 
protagonists' respective methods. 

Fluxions and differentials compared 
Newton's approach to the calculus was a dynamical 
one. Isaac Barrow, who in turn was familiar with the 
works of Bonaventura Cavalieri, probably influenced 
Newton. Cavalieri thought of the tangent at a point on a 
curve as the direction which a particle was following 
while at that point. The word fluxion is derived from 
the Latin word fluxus which means .flowing. Newton 
imagined a particle having two components of 
velocity - one parallel to the x-axis and another parallel 
to the y-axis tracing a curve in the xy-plane. He denoted 
these velocities xand y , and called them the fluxion of 
x and the fluxion of y, respectively. Note that Newton 
involved time in his calculus. He called x and y the 
fluent of xand the fluent of Y, respectively. In other 
words, the fluxion is the inverse of the fluent and vice 
versa. Then he introduced the letter o to signify an 
infinitely small (or infinitesimal) interval of time. 
Hence, in the case y = xn, in an interval of time o, x 
becomes x + x o and y becomes y + jt o. Newton 
discovered the binomial theorem and so he had no 
problem in expanding (x +x 0)". Then he eliminated the 
terms without o (namely, y and 2) and divided 
throughout by o. Since o is considered as infinitely 
small, we then neglect terms with o, 02 and higher 
powers and obtain y= nxn x. Newton was uncertain as 
regards the last step, which he referred to as "blotting 
out the 0's". He admitted that his method is "shortly 
explained rather than accurately demonstrated." 
Newton relied heavily on intuition. However he got 
close, as the following extract from the Principia (Vol I, 
Sect. I, Lemma I.) shows: 

Quantities, and the ratio of quantities, which in any 
finite time converge continually to equality, and before 
the end of that time approach nearer the one to the other 
than by any given difference, become ultimately equal. 
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We have here the concept of limit presented in such a 
way that led to confusion and to criticism. However, 
Newton emphasised that fluxions are never considered 
alone but in ratios. 

The fact that o, initially non-zero and then practically 
set to zero led George Berkeley, an Irish dean in the 
Church of England, to criticise Newton and called 
infinitesimals "the ghosts of departed quantities" in his 
book The Analyst. Thus, concluded Berkeley, "he who 
can digest a second or third fluxions ... need not, me 
thinks, be squeamish to accept anything in divinity7' 
since both led to true results. 

Leibniz employed differentials, that is differences, and 
hence the letter d in the calculus. He did not involve 
time at all. His approach was geometrical and is in fact 
the one we now employ. The change in variable x was 
denoted by dx. In Newton's notation this is equivalent 
to xo. He called the quantity dx the differential of x. 
His analysis was based on the differences between the 
coordinates of two neighbouring points. Note that as 
yet there is no notion of a derivative. Like Newton, he 
neglected terms with products of infinitesimals. He 
justified this by appealing to intuition. In his 1684 
paper he gave, correctly, various results including the 
product and quotient rule, without any derivations. 

Both Leibniz and Newton had problems in explaining 
away the disappearance or neglect of terms involving 
products of infinitesimals. Such explanations had to 
wait a hundred years. Leibniz appealed to the then 
philosophical concept of continuity to justify the limit 
when the infinitesimals become zero. Nowadays we 
define continuity by means of limits and not vice-versa. 
Newton was no more nearer to an adequate explanation. 
Because of such problems the calculus was not at first 
universally accepted. Christian Huygens did not accept 
it but he did not attack it. 

Another problem, which beset Leibniz, was the notion 
of higher differentials. Leibniz did not regard the ratio 

dy Y 
-, which is equivalent to - in terms of Newton's 
dx x 

fluxions, as fundamental, and hence he could not give a 
satisfactory definition of dZy. Leibniz appealed to an 
analogy: if we picture motion as a line, then the velocity 
is represented by an infinitely smaller line, and the 
acceleration by a doubly infinite smaller line. In a letter 
from Johann Bernoulli to Leibniz in which expressions 

2 
such as d d 6 y  = d y are used liberally, shows the 

extent of the lack of clarity in the concepts. 

The study of the convergence of series, essential to the 
idea of limit, which in turn is essential in both the 
differential and integral calculus, was lacking. Leibniz, 
in fact, seriously considered whether the series 

1 - 1 + 1 - 1 + ... converged to %. Having proved that 
d ( 2 )  = n.P1dx for integral values of n he then assumed 
the result for rational values of n. Newton expanded 
(x + 0)" for fractional values of n as an infinite series. 
He assumed convergence without any proof. Leibniz 

dy 
thought of - ,as  a ratio rather than as a limit. 

dx 
It is unfortunate that both men lacked rigour. But 
despite this there was no lack of results This was 
especially true on the continent, where Leibniz method 
was used with advantage in preference to fluxions. The 
Bernoulli's produced many useful results. 

Newton and Leibniz differed from others before them in 
that their methods were general. As stated above, 
rigorous proofs were lacking. Newton and Leibniz were 
the first to recognize the relation between the problem 
of tangents and that of quadratures (areas) - that one 
was the inverse of the other. This is the fundamental 
theorem of the calculus. However, we must not forget 
that others before Newton and Leibniz did important 
work concerning tangents and areas. John Barrow, and 
Fermat were close to the discovery of the calculus. 
Thus Newton and Leibniz "stood on the shoulders of 
giants". 

Fig. 1 Nouton'sflluions and Leibniz' dfferenlials 
compared 

Before the Calculus 
We shall first examine briefly the work Fermat and 
Barrow, two figures who influenced both Newton and 
Leibniz. The idea of changing the independent variable 
of a function by a small amount and then setting that 
amount equal to zero was not something new at the time 
of Newton and Leibniz. Fermat employed it in his 
method for finding maxima. To find the maximum 
area of a rectangle with sides x and (a - x) with x < a,  he 
altered x by a small amount E. Fermat then argued that 
near the maximum the areas of both rectangles should 
be nearly equal, and by neglecting E, he obtained 
correctly x = a/2. It may be said that infinitesimals were 
accepted after Fermat applied them with success to this 
and other problems. 

His method of finding tangents is illustrated in Fig. 2. 
We first find the subtangent TQ as follows. Let OT = a,  
OQ = x and QQc = E. We note in passing that E is 
Newton's x o and Leibniz' dx. We shall illustrate this 
method for the parabola y = x2. We note that for nearby 
points P and P' we have QP = x' and Q 'PC ' < (x + E)?. 
Hence we have 
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0 T Q Q' 
Fig.2 Fermat's diagram for his 
method of find in^ tan~ents 

(X + E)' P'Q1 P Q  (X + E l 2  x 2 

- >--- * >- 
TQ' TQ' TQ x + E - a  x - a  

After cross-multiplying, opening brackets and 
simplifying, we obtain 

After dividing by E and simplifying we end with 

Fermat then argued that equality holds if we set E = 0 
and hence we obtain a = % x. Hence the tangent to the 
curve at P is 

2 P Q  x 2x2 - =-- - 2x 
TQ x - a  x 

Note that the idea of a limit does not occur in the 
argument. Fermat did not have the binomial theorem, 
and hence he failed to obtain general results. Barrow's 
method (see Fig. 3) was essentially similar to that of 
Fermat. But the rules he gave were more general. They 
could be applied for implicit equations. He laid down 
the following rules: 

1. L e t M R = a a n d N R = e ;  
2. Substitute the values x - e and y - a for x and y , 

respectively, in the equation; 
3. Reject those terms with powers of a and e or terms 

with ae, etc. ; 
4. Equate the known terms (i.e. terms without a or e) to 

zero; 
5. Substitute M P  for a and TP for e, and hence 

determine TP. 

Here, of course, in stating (5) Barrow makes the 
assumption that the points M and N are close. The idea 
of a limit, although not expressed, is inherent in this 
assumption. The letters a and e are our more familiar 

A T Q P  
Fig.3 Barrow's diagram for his 
method of findinn tannents 

Ay and Ax, respectively. Barrow did not mention 
Fermat, so we may perhaps assume that he was not 
familiar with Fermat's method. 

We now consider the Fermat's method of quadrature for 
the equation y = 2 I q .  Consider the points on the x-axis 

2 3 x, ex, e x ,  e x ,  ...., where e < 1. We have thus a set of 
ever-diminishing intervals. If we construct rectangles 
from these points, as shown in Fig. 4, we can 
approximate the area under the curve by the sum of 
terms of the form 

Hence, summing to infinity starting from n = 1, we 
obtain 

P !  

x (1 - e) /[I - e 7 ] 
The nearer e is to 1 the more accurate will this 
expression for the area be. Before doing this Fermat 
made the substitution e = Eq. Noting that 
1 - e  = ~ - E ~ = ( ~ - E ) ( ~ + E + E ~ +  ... +Eq-I) 
and that 

l?!z 
1- e = ~ - E ~ ' ~ = ( I - E )  ( I + E + E ' +  ... +Eptq- '  
we substitute this in the equation. Setting E = 1, we 

1 

L% 

x v .  obtain the area - 
P'4 

One is almost tempted to attribute the discovery of the 
calculus to Fermat. But one must bear in mind that 
Fermat saw no connection between the problem of 
tangents and that of quadrature. Furthermore, he did not 
recognise "differentiation" and "integration" as 
operators in themselves independent of geometrical 
applications. 

The dispute erupts 
In 1711 the Secretary of the Royal Society received a 
letter from Leibniz, who was also a member. Leibniz 
complained that in a paper to the Philosophical 
Transactions, the author Dr. John Keill insulted him. In 
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Fig. 4 Fermat's method of quadrature. 

this paper Keill gave ~ e w t o n  precedence in the 
discovery of the calculus. Newton saw Leibniz' letter as 
a warning - his priority in the discovery was at stake. 
Newton chose his champions. Foremost among these 
were Keill himself, the Secretary Hans Sloane, Roger 
Cotes, and Edmund Halley. In 1712 the Society set up 
"a numerous Committee of Gentlemen of Several 
Nations" whose aim was to investigate Leibniz' 
accusation. The nations represented in this, ostensibly, 
impartial committee were England, Scotland and 
Ireland. A Prussian ambassador and a Huguenot CmigrC 
were also thrown in. 

In 1713 all the relevant correspondence between 
Newton and Collins was published in a volume known 
as Commercium epistolicum. The outcome from this 
committee the following year was as expected. Keill 
was exonerated by the report and Leibniz was accused 
of plagiarism. 

Both Newton and Leibniz worked behind the scenes. In 
1713 an anonymous printed sheet known as the Charta 
volans spread quickly throughout the continent. This 
paper emphasised the fact that Newton published 
nothing about the calculus before Leibniz. It quoted a 
"leading mathematician" who said that in 1670 Newton 
invented only his method of infinite series. The 
"leading mathematician" was Johann Bernoulli, who 
asked Leibniz not to mention him. Johann and his 
nephew Nikolaus were prominent, albeit reluctant, allies 
of Leibniz throughout the dispute. They were not aware 
that Leibniz saw the De analysi when he was in 
London. 

In the same year the inaugural issue of Journal Literaire 
carried an anonymous letter by Keill in defence of 
Newton. A French translation of the report by the 
Royal Society was included. Leibniz responded in the 
same journal by publishing (anonymously) a translation 
of the Charta Volans and a treatise on the difference 
between Newton's and Leibniz' methods. The author 
argued that in the Principia Newton did not make use of 
the calculus. 

The response was another communication by Keill in 
the same journal published in 1714. The January and 
February issue of the Philosophical Transactions of the 
Royal Society was devoted, except for three pages, to 
Newton's cause. The dispute was, of course, officially 
between Keill and Leibniz. 

In 1716 a number of foreign ambassadors assembled at 
the Royal Society to examine the documents which 
comprised the Commercium epistolicum. They 
recommended that Newton and Leibniz should 
communicate directly. Newton was thus compelled to 
answer Leibniz' letter. In his reply to Leibniz' first 
letter he called the "leading mathematician" quoted in 
the Charta volans as a "pretended mathematician". 
Leibniz showed the letter to Bernoulli in an attempt to 
provoke him. The correspondence lasted five rounds of 
letters, the length of which increased with every round. 
The correspondence came to an end with Leibniz' death 
in December. 

The matter did not end with Leibniz' death. Six years 
after his death The Royal Society published a review, 
the Recensio, in which the dispute was recapitulated in 
Newton's favour. Needless to say the author was 
Newton. In 1722 the Commercium epistolicum was 
republished with revisions and footnotes that were 
unannounced in any preface. 

Newton had his enemies on English soil. Dr. John 
Woodward informed Leibniz that whatever was done 
against him "proceeded solely from Mr. Newton" and 
hoped that he would not blame the Royal Society. He 
also promised to get him a copy of the Commercium 
epistolicum. The Astronomer Royal, John Flamsteed, 
who at the time of the dispute was immersed in one 
himself with Newton, sent Leibniz a list of mistakes in 
Newton's lunar theory. 

Consequences 
Newton's victory in the dispute was, in a sense, 
unfortunate. His method of fluxions was cumbersome. 
His notation and method were still in use in England in 
1816. There was confusion between fluxions and 
infinitesimals as is apparent in Joseph Raphson's book 
The History of Fluxions published in 1715. He unjustly 
criticised Leibniz method and notation as "less apt and 
laborious" and as a "far-fetched symbolizing" and 
"insignificant novelties". Meanwhile, Leibniz' notation 
and method were adopted with great success on the 
continent. 

Just as a clear language is essential to good literature, a 
clear mathematical notation is essential to the 
development of mathematics. The Newton-Leibniz 
dispute shows us that mathematicians may allow 
politics to influence their adoptions and impair their 
judgement. When the calculus was put on a firm 
footing in the 19th century, Leibniz notation was 
universally adopted. All that remains of Newton's 
notation is as the derivative of x with respect to time. 
But no modern teacher refers to as the fluxion of x. 

The dispute occurred at a time when scientific societies 
under royal patronage came into existence. An 
ambitious man accepted and honoured by members of 
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an established society meant instant fame which in turn 
guaranteed employment. His papers would be 
published and read widely. These societies had a 
controlling influence on intellectual life - they could 
make or break an aspiring intellectual. When Newton 
established himself as President of the Royal Society he 
became arrogant and autocratic. Newton controlled the 
membership and even cut short debates. We have 
already seen how Newton used the society for his own 
ends in his dispute with Leibniz. 

It appears that Newton was more interested in forming a 
"Newtonian" school rather than furthering the 
advancement of science. He failed to recognise the 
superiority of Leibniz method over his own. Both 
Newton and Leibniz unashamedly used journals to 
further their own cause. However, it must be 
acknowledged that the Acta eruditorum, unlike the 
Philosophical Transactions, published papers from both 
sides of the divide. Although printing was advanced 
enough for the spread of knowledge, yet communication 
between individuals was still precarious. No postal 
system existed and one had to find travellers to act as 
couriers. When Oldenburg died communication between 
Newton and Leibniz ceased. 

One cannot end this section without commenting on 
Newton's reluctance to publish. One of the reasons he 
avoided publishing was to avoid controversy. When he 
published a paper on corpuscular theory of light, it was 
challenged by the adherents of the wave theory. This 
controversy (not by any means a dispute) occupied him 
for some time and distracted him from his other 
pursuits, mainly alchemy. Newton, unlike Leibniz, 
stood to lose only fame by not publishing. Leibniz, on 
the other hand, was not a man of means. Fame meant 
employment, which is essential for financial security. 
Hence his unwillingness to share the discovery of the 
calculus with others. Newton, on the other hand, felt 
{hat his reputation was at stake. Newton could not take 
an accusation of plagiary lightly. In a letter to 
Bernoulli, after accepting his denial of attacking him 
personally, claimed that though he never sought fame 
among foreign nations, yet he had to preserve his 
character. 

As we saw, others before Newton and Leibniz were 
close to the discovery of the Calculus. The time was 
ripe for its discovery. It is not inconceivable that 
Leibniz discovered the Calculus independently. In fact 
we now credit him with the independent, albeit later, 
discovery of the Calculus. There comes a time when a 
major theory simply begs discovery. At such times 
more than one individual may qualify as a discoverer. 

Two deaths 
Newton devoted a considerable time in his old age 
revising his scientific works for publication as new 
editions. His Opticks and Principia were bestsellers. 
The controversy with Leibniz did not diminish his 

stature or acceptance of his scientific works on the 
continent. Newtonianism took the known world by 
storm. 

Newton pursued his theological researches as 
assiduously as his other interests. It is estimated that he 
wrote more than a million words on the subject. He 
wrote books on chronology, prophesies and on 
superstitious nonsense like the Cabala and Numerology. 
He believed in Hermes Trimegistus, a mythical ancient 
figure who passed on to Mankind scientific knowledge. 
He accepted 4004 BC as the year of creation, a date 
calculated by James Ussher, later Bishop of Armagh. 
He also gives the date of the Argonauts' expedition! 

Newton died on 20th March 1727 at one o'clock in the 
morning. Among the pallbearers were the Lord 
Chancellor, and members of the Committee of the 
Royal Society. He was interred in Westminster Abbey. 

The last years of Leibniz' life were dedicated mostly to 
the dispute. But he still remained creative and in 1710 
he published Theodicke, a philosophical work in which 
he tackled the problem of good and evil. In 1714 he 
published Monadologia, perhaps his most influential 
philosophical work. On 14th November 1716 he died in 
Hanover after long suffering from arthritis and gout. 
Only his secretary, Eckhart, attended his funeral. 
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