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Abstract. Traditional survival modeling techniques, in-
cluding the Kaplan Meier estimator, Cox regression and
parametric survival models assume a fairly homogeneous
population, where variation in survival durations can be
explained by a small number of observed explanatory vari-
ables. However, in the presence of heterogeneity, frailty
models are more appropriate to model survival data by
introducing random effects that account for the vari-
ability generated from unobserved covariates. This pa-
per presents two types of frailty models. The unshared
frailty model assumes that different individuals have dis-
tinct frailties, while the shared frailty model assumes that
the population can be divided into clusters, where mem-
bers in the same cluster share the same frailty. Due
to their nice mathematical properties, the Gamma and
the Inverse Gaussian distributions are the most popular
choices for the frailty distribution.

These survival models are fitted to a data set using the
facilities of STATA. The participants are patients who
underwent an aortic valve replacement procedure at a
Maltese hospital between 2003 and 2019. The dependent
variable is the duration till death or till censored and the
eleven predictors provide information about the patients’
health condition; surgery operative procedures; and dur-
ation of convalesce period. Moreover, in shared frailty
models the patients are clustered by their diabetic condi-
tion since it is known that diabetic patients are more at
risk of dying following aortic surgery.

Keywords: Shared and Unshared Frailty models,
Gamma and Inverse Gaussian Distributions, Aortic Valve
Replacement
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1 Introduction

Survival analysis is a useful statistical tool for problems
that deal with survival data, where the outcome vari-
able is the duration for a certain event to occur. Initially
survival analysis was used to model survival durations of
patients undergoing surgical treatment or rehabilitation
therapy; however, this statistical procedure has been ex-
tended to several research areas in the last three decades.
Survival models are used to estimate the duration till fail-
ure of mechanical and electrical devices in engineering,
relapse duration to alcohol and drug addiction in crimin-
ology. These models are used to evaluate product reli-
ability in market research, measure viability of therapies,
instruments and techniques in medicine, estimate life ex-
pectancy in demography, model marriage durations be-
fore separation/divorce in sociology, evaluate profitability
of investment schemes in finance, amongst other applic-
ations.

The non-parametric Kaplan-Meier and Nelson-Aalen
estimators, the semi-parametric Cox regression models,
and the parametric survival models all assume that the
members within a population are homogeneous with sim-
ilar hazards. It is known in survival data, that unobserved
heterogeneity exists between members, which cannot be
explained directly by observable covariates. This unex-
plained variability is very common in epidemiological, med-
ical and rehabilitation applications. For example, a spe-
cific treatment can have diverse effect on the recovery
duration of patients, and a rehabilitation programme can
have different impact on the relapse duration of drug ab-
users. To address this limitation, Vaupel et al. (1979)
introduced frailty survival models, where a random effect
(frailty) is introduced in the model to have a multiplic-
ative effect on the hazard function of an individual or
group of individuals. Frailty models allowed analysts to
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account for unobserved heterogeneity, which effectively
reduces the possibility of inaccurate parameter estimates
and biased standard errors. These models assume that
the weaker individuals are more likely to succumb earlier
than the stronger members. The univariate frailty model
proposed by Vaupel et al. (1979) was further extended by
Clayton (1978) who applied the technique on multivariate
data related to chronic disease incidence in families.
Two popular frailty distributions in survival models are the
Gamma and Inverse Gaussian distributions due their sim-
pler mathematical properties. Hougaard (1984) showed
that for a Gamma frailty distribution the relative het-
erogeneity remains constant, while the inverse Gaussian
frailty assumes that this heterogeneity decreases with
time. Both Vaupel et al. (1979) and Hougaard (1986)
showed that although different individuals may have sim-
ilar physical health conditions, some may be more suscept-
ible to different threats and frailties. Hougaard (1986)
argued that the choice between using an Inverse Gaussian
or a Gamma distributed frailty depends entirely on the
frailty instability of an individual. While frailty tends to be
steady during an individual's life, it tends to deteriorate
in later stages. Subsequently, many authors endorsed this
frailty concept of a concealed random effect when ana-
lyzing survival data.

One of the objectives of frailty survival models is to es-
timate the variance of unobserved risk among different
individuals. There are two approaches how frailty is dis-
tributed in the data by using shared and unshared frailty
models. Unshared frailty models assume that different
individuals have distinct frailties. For example, the re-
currence times of machine malfunctions after being fixed
is investigated by using unshared frailty models. On the
other hand, shared frailty models assume that individuals
within a group share frailty; however, this frailty may vary
between groups. For example, some individuals may be
more susceptible than others to be diagnosed with cancer
or heart disease because of some unknown genetic condi-
tion, or some countries are more likely to engage in war
than others for unknown reasons.

When intragroup correlation exists, shared frailty models
may be more appealing than unshared frailty models. The
seminal contributions of Clayton (1978) and Clayton et
al. (1985) were fundamental in the development of shared
frailty models. ldentifiability issues related to frailty sur-
vival models were first addressed by Elbers et al. (1982),
while theoretical proofs were given by Heckman et al.
(1984). Other extensions focused on methods of how
to measure correlation in bivariate survival data using an
arbitrary parametric hazard function. Hougaard (1986)
assumed Weibull individual hazards when fitting shared
frailty models, while Whitmore et al. (1991) applied an

10.7423/XIENZA.2022.1.03

Identifying Risk Factors of Aortic Valve Replacement

inverse Gaussian shared frailty model by assuming con-
stant individual hazards.

2 Theory of Unshared Frailty Models

The seminal work of Clayton et al. (1985), among other
authors, highlighted the utility of frailty models and
stressed the benefit of adding frailty to account for un-
observed heterogeneity. As described in the introduction,
there are two types of frailty models to analyze survival
data in the presence of unobserved heterogeneity. In un-
shared frailty models, the frailty is introduced at the ob-
servation level as an unobservable multiplicative effect, on
the baseline hazard function ho(t), given by:

h(tla) = ctho(t) (1)

In this context, o is a non-negative random mixture
variable where E(a) = 1 and var(a) = 02. When 2 is
small, the values of a are located close to 1; however the
values of a are more dispersed when ¢? is large, inducing
larger heterogeneity in the individual hazards ahg(t).

Let S(t]a) denote the survival function of a life conditional
on the frailty o and let fot ho(s)ds = Mp(t) then

S(t\a) — e fot h(sla)ds _ efafot ho(s)ds _ efocMo(t) (2)

If observed covariates, denoted by an (p x n) matrix
X, are available then the hazard is proportional to the
baseline hazard. Moreover, the constant of proportion-
ality is the term exp(B8'X), where X = (x,...,X,) and
B = (Bi1.....Bp) is the vector of regression parameters.
So model (1) becomes:

h(t|X, o) = aho(t) exp(B'X) (3)

The two distributions that are normally used for the

probability density function f(a), of a are the gamma
and inverse Gaussian distributions.
Given the simple Laplace transform of the Gamma distri-
bution I'(k, ), it is easy to derive the closed-form expres-
sions of the survival and hazard functions. The exponen-
tial distribution is a special case of the Gamma distribution
when the shape parameter kK = 1. If @ has a Gamma dis-
tribution and a > 0, A > 0, k¥ > 0 its probability density
function is given by:

K

(k)

fla) = af e (4)

By setting k = A = 1/0? ensures that the model
is identifiable and E(a) = 1 and var(a) = 02. Using
Laplace transform, Wienke (2010) derives the uncondi-
tional survival and hazard functions, which are given by:
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1
[1+ 02 Mo(t)]H/

LMo() _ o) o
L'[Mo(t)] 14+ 02My(t)
Moreover, Wienke (2010) shows that if observed cov-

ariates x; are available for life / then the mean frailty and
frailty variance for a life dying beyond time t are given by:

5(t) = LMo ()] = (5)

h(t) = —ho(t)

! 7
1+ a2Mp(t) exp(B’'X) (7)

E(aX, T >t) =

0.2

varlaX. 7> 0 = r o ee@XE O

The Inverse Gaussian distribution is also considered as
a frailty distribution because similar to the Gamma dis-
tribution, simple closed-form expressions exist for the un-
conditional survival and hazard functions. If a has an
Inverse Gaussian distribution and a > 0, A > 0, > 0 its
probability density function is given by:

VA AMa — w)?
- e || ©

Setting u = 1 and A = 1/0? ensures that the model
is identifiable, where E(a) = 1 and var(a) = 2. The
unconditional density function, the unconditional survival
and hazard functions are given by:

h(t) = —1o) (11)

1+ 20’2/\//0(1')

If observed covariates x; are available for life / then the
mean frailty and frailty variance for a life dying beyond
time t are given by:

1

E(alX, T > t)= V14 02Mo(t) exp(B’X)

(12)

0.2

var(a|X, T > t) = [1 4+ o2My(t) exp(B'X)]?

(13)

3 Theory of Shared frailty Models

A generalization of the unshared frailty model is the shared
frailty model, where the frailty is assumed to be group-
specific. Basically shared frailty arises when the hetero-
geneity impact is common among individuals within a
group, yet each set has a distinct random effect, which in
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turn causes frailties to be interrelated.

Suppose there exist n groups and that group / comprises
n; observations associated with the unobserved frailty o;
for 1 < < n. Their hazard functions are given by:

h(tla) = aiho(t) (14)

Let S(t|e;) denote the survival function of a life con-
ditional on the frailty a; and let fot” ho(s)ds = Mo(tij)
then

S(tin, ..., tin|oti) = exp[—a; Z Mo(ti;)]

J=1

(15)

If observed covariates X; for 1 < | < n are available
then the hazard is proportional to the baseline hazard,
where the constant of proportionality is the exponential
term exp(B'X). Assuming that the survival times in group
i are independent, then model (16) becomes:

h(t|X;, aj) = ajhg(t) exp(B'X;) (16)

where B = (1, ..., Bp) is the vector of regression para-
meters and X; = (Xj1, ..., Xip;) is the covariate matrix of
the members in the it" cluster. The conditional survival
function on frailty a; which is shared by all individuals in
group / is given by:

nj
S(ta, ..., t,'n,|X,‘, a;) =exp | —a; Z /\//o(t,'j)eﬁ/x’f (17)
J=1

where My (t;;) is the cumulative baseline hazard func-
tion of the jt" members in the it/ cluster. Averaging (17)
with respect to the frailty o; gives the survival function
for the ith cluster,

S(til. ceey tin,|xi) =1L Z MO(tij eﬁ/x,j)

Jj=1

(18)

where L denotes the Laplace transform of the frailty
variable. The univariate unconditional survival function
can be expressed by means of the Laplace transform:

S(t,j|X,) = L(/\//o(f,‘j)éﬂlx"/) (19)

Mo(t;)eP = L7 [S(t;1X;)] (20)

where L™! is the inverse of the Laplace transform L.
The Gamma and Inverse Gaussian frailty models are of-
ten used mainly for their nice properties, particularly their
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simple Laplace transform. Assuming a Gamma frailty dis-
tribution with E(a) = 1 and var(a) = o2, the survival
function for the it/ cluster is obtained by substituting (5)
in (18).

—1/0?

n;
S(tj, oo tin|Xi) = [ 1+ 02 Mo(t;;)eP™
j=1
(21)
Moreover, by assuming an inverse Gaussian frailty dis-
tribution with E(a) = 1 and var(a) = o2, the survival
function for the /*" cluster is obtained by substituting (10)
in (18).

1— /14 202My(t)eP
02

S(ti1, ..., tini]X;) = exp (

(22)

Popular choices for the baseline hazard include the ex-

ponential distribution for constant hazard; the Lognor-

mal and Loglogistic distributions for humped hazards and

the Weibull and Gompertz distributions for monotonic in-
creasing hazards.

4 Application

The dataset consists of 480 patients who underwent
an aortic valve replacement at the cardiothoracic centre
in a Maltese hospital. This data was collected by a
cardio-vascular surgeon over a period of 16 years, ran-
ging between 2003 and 2019. Patients who had missing
information were excluded from the dataset. Most of the
patients who underwent this treatment were aged over
60 years, which is expected since the prevalence of heart
disease increases drastically with age. After surgery, all
patients had follow-up appointments. The time of death
of patients who died before the end of the investigation
period (2019) was recorded and the survival duration was
computed. Patients who were still alive after the end of
the investigation period were right censored.

The dataset includes a number of patient-related explan-
atory variables, together with other information related
to the patients’ health conditions in pre-operative and
the post-operative periods. In this study, the dependent
variable is Time, which measures the survival duration
between the surgery and the time of death/end of the in-
vestigation period. Status indicates whether the patient
is dead or alive at the end of the investigation period and
will be used as a censoring variable. BMI/ provides the
ratio of the patient’s weight (kilograms) to the patient’s
height squared (m?). The Parsonnet score measures the
risk of death of a patient after undergoing heart surgery,
where the larger the score the higher is the risk. HDU
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and ITU record the duration (days) of the patient's re-
covery in the High Dependency Unit and the Intensive
Therapy Unit respectively. Hypertension indicates the pa-
tient's presence or absence of high blood pressure and
Transfusion indicates whether the patient required/not re-
quired blood transfusion directly from another individual.
Ventilation measures the duration (hours) that the patient
spent on a life-assisting mechanical ventilator following
the surgery. Creatinine indicates the presence/absence of
waste product in the blood that normally passes through
the kidneys and is eliminated through urine. Dialysis in-
dicates whether or not the patient has kidney problems
and is receiving dialysis treatment. Blood measures the
blood volume (millilitres) that was provided to the patient
during or after surgery and /ABP indicates whether or not
the patient required an intra-aortic balloon pump during
heart surgery. Diabetes indicates whether the patient is
diabetic or normal and will be used as a clustering variable
in shared frailty models.

Of the 480 patients participating in the study, 22.8% died
before the end of the investigation period and the rest
were right censored. The mean Parsonnet score (6.24)
indicates that the risk of mortality is fair and that there is
a 5% predicted mortality rate. All the patients undergo-
ing heart surgery spend one night in ITU and are retained
in this unit if health condition is critical. If the patients’
health condition is not life-threatening, they are trans-
ferred to the HDU for a convalescence period. The mean
duration of patients requiring support of a ventilator was
5.24 hours and the mean blood volume transfused was
565.66 millilitres; however, these values were consider-
ably larger for high risk patients. The mean BMI (29.44
kg/m?) is larger than average indicating that the majority
of the patients were overweight or obese. 29.7% of the
patients were diabetic; 50.9% suffered from high blood
pressure; 1.7% were on dialysis, 2.6% required the use of
an intra-aortic balloon pump during surgery; 35% required
blood transfusion and 3.2% of the patients had high levels
of creatinine.

5 Results

It is known that the Gompertz distribution provides a re-
markable close fit to adult mortality in contemporary de-
veloped countries. For this reason, all fitted models were
implemented assuming a Gompertz baseline hazard func-
tion given by:

ho(t) = Aje"@ (23)

where \; = exp(Bo+...+BpXp) and ¥is an ancillary para-
meter. Table 1 displays the hazard ratios, standard errors
and p-values of the non-frailty model. Since a number of
the predictors were not significant, a backward procedure
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was used to identify the parsimonious model.

Parameter H.R S.E Z P> |z
Constant 0.000 0.000 -24.4 0.000
BMI 1.005 0.012 0.42 0.675
Hypertension  0.865 0.158 -0.79  0.428
Parsonnet 1.096 0.010 9.57 0.000
ITU 0.799 0.152 -1.17 0.241
HDU 1.056 0.012 4381 0.000
Ventilation 0.995 0.011 -0.46 0.647
Blood 0.999 0.001 -0.09 0.924
IABP 1.423 0489 1.03 0.305
Dialysis 3.523 1.410 3.15 0.002
Creatinie 1.539 0411 1.62 0.106
Transfusion 0.978 0.317 -0.16 0.874
¥ 0.000 0.000 9.47 0.000
Log-Likelihood -914.31

Table 1: Non-frailty model

Table 2 displays the hazard ratios, standard errors and
p-values of the parsimonious non-frailty model. This sur-
vival model assuming a Gompertz baseline hazard function
identifies three significant predictors of survival duration,
where the Parsonnet score is the best predictor, followed
by recovery duration in HDU and dialysis treatment. The
hazard of death for patients on dialysis is 2.878 times
than those who have no kidney problems. Moreover, for
every additional treatment day in the High Dependency
Unit, the hazard of death increases by 4.9% and for every
1 unit increase in the Parsonnet score the risk of death
increases by 9.1%, given that other effects are kept con-
stant.

Parameter H.R S.E Z P> |z|
Constant 0.000 0.000 -75.45  0.000
Parsonnet 1.091 0.010 9.49 0.000
HDU 1.049 0.010 5.00 0.000
Dialysis 2.878 1.108 2.75 0.006

¥ 0.000 0.000 10.19  0.000
Log-Lokelihood -919.40

Table 2: Parsimonious non-frailty model

Table 3 and table 4 display the hazard ratios and cor-
responding standard errors of the parsimonious unshared
frailty models assuming a Gamma and Inverse Gaussian
distribution and a Gompertz baseline hazard function.
The likelihood ratio statistics (3.72 and 2.91) vyield p-
values (0.027 and 0.044), which are less than the 0.05
level of significance. This implies that the frailty variance
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is significantly positive.

Parameter H.R S.E Z P> |z]
Constant 0.000 0.000 -51.07 0.000
Parsonnet 1.113 0.018 6.68 0.000
HDU 1.060 0.013 4.84 0.000
Dialysis 3.346 1.704 2.37 0.018

¥ 0.000 0.000 6.47 0.000
Log-Lokelihood -917.54

Table 3: Parsimonious unshared Gamma frailty model
LR test of o?var(a) = 0: Chibar2(01) = 3.72, p = 0.027

Parameter H.R S.E Z P> |z|
Constant 0.000 0.000 -50.16  0.000
Parsonnet 1.111 0.019 6.06 0.000
HDU 1.059 0.013 4.84 0.000
Dialysis 3.347 1.660 2.44 0.015

Y 0.000 0.000 5.33 0.000
Log-Lokelihood -917.95

Table 4: Parsimonious unshared Inverse Gaussian frailty model
LR test of ovar(a) = 0 : Chibar2(01) = 2.91, p = 0.044

Table 4 and table 5 display the hazard ratios and corres-
ponding standard errors of the parsimonious shared frailty
models assuming a Gamma and Inverse Gaussian distri-
bution and a Gompertz baseline hazard function. The
likelihood ratio statistics (approx. 0) yield p-values (ap-
prox. 1), which exceed the 0.05 level of significance. This
implies that frailty vanishes completely when the patients
are grouped by their diabetic condition.

Parameter H.R S.E Z P> |z]
Constant 0.000 0.000 -75.45 0.000
Parsonnet 1.091 0.010 9.49 0.000
HDU 1.049 0.010 5.0 0.000
Dialysis 2.879 1.108 2.75 0.006

¥ 0.000 0.000 10.19 0.000
Log-Lokelihood -919.40

Table 5: Parsimonious shared Gamma frailty model
LR test of o?var(a) = 0 : Chibar2(01) = 0.00, p = 1.000
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Parameter H.R S.E Z P> |z|
Constant 0.000 0.000 -75.45  0.000
Parsonnet 1.091 0.010 9.49 0.000
HDU 1.049 0.010 5.0 0.000
Dialysis 2.879 1.107 275 0.006

¥ 0.000 0.000 10.19  0.000
Log-Lokelihood -919.40

Table 6: Parsimonious shared Inverse Gamma frailty model
LR test of ovar(a) = 0 : Chibar2(01) = 0.00, p = 1.000

6 Conclusion and Recommendations

All five models identify three significant predictors and all
models highlight that the hazard of death is higher for pa-
tients who are on dialysis and increases with an increase
in the Parsonnet score and an increase in the treatment
duration in HDU. Table 7 shows the AIC and BIC val-
ues of the five fitted models. The fact that these values
vary marginally between the five model fits indicate, that
for this data set, shared and unshared frailty models did
not provide a considerably improvement in goodness of fit
compared to non-frailty models. This is a clear example
where a more complex model does not always provide
more predictive power than a simpler model. However,
addressing heterogeneity due to unobserved covariates is
highly recommended to obtain robust estimates of the
hazard ratios and standard errors.

Frailty Distribution AIC BIC
No frailty assumed 1848.8 1869.7
Unshared Gamma 1847.1 1872.1
Unshared Inverse Gaussian 1847.9 1872.9
Shared Gamma 1848.8 1875.8
Shared Inverse Gaussian 1848.8 1875.8

Table 7: AIC and BIC measures for goodness of fit

The Gamma and Inverse Gaussian distributions have
been used extensively as frailty distributions, mainly be-
cause of their simple Laplace transform. Another sug-
gestion is to use the log-normal distribution for frailty,
particularly when the random effects are assumed to be
normally distributed. This allows more flexibility especially
in modelling multivariate correlation structures. The de-
velopment of new statistical software in enhancing com-
putational power and the development of user-friendly es-
timation procedures such as the MCMC adaptive quadrat-
ure techniques make it possible to accommodate normal
distributed random effects.

Another recommendation is to use semi-parametric frailty
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models, which extends the proportional hazards Cox
model by introducing random effects to account for un-
observed heterogeneity in the data. This semi-parametric
approach is available both for shared and unshared
Gamma frailty. Two approaches can be used to estimate
parameters in semi-parametric frailty models. The first
approach is the EM algorithm, which iterates between the
Expectation and the Maximization steps. The second ap-
proach is the penalized partial likelihood (PPL) method,
where estimation is based on Laplace approximation of
the likelihood function.

Another recommendation is to use accelerated failure
time (AFT) survival models instead of proportional haz-
ards (PH) models. AFT models assume that the effect of
a covariate is to decelerate or accelerate the survival out-
come by a constant. This differs from PH models which
assume that the effect of a covariate multiplies the haz-
ard by a constant. Survival distributions that accommod-
ate AFT survival models in STATA are the Exponential,
Weibull, Log-normal and Log-logistic distributions.
Another recommendation is to use correlated frailty mod-
els, which are mixture models that assume that the frailty
for each individual is random. These models assume that
event times in a cluster are independent, given the frailties
of the individuals. In other words, frailty variables are al-
lowed to be correlated but may not necessarily be common
to all individuals in a cluster, implying dependence between
event times. The shared frailty models are special cases
of the correlated frailty models by setting the correlations
between the frailties to be equal to 1.

Another recommendation is to use multilevel survival
models. Traditional survival models assume that indi-
viduals are independent of each other. However, indi-
viduals who are nested within higher level structures are
more likely to have correlated outcomes, thus violating
the assumption of independence. The homogeneity within
clusters may be caused by cluster characteristics that are
difficult to measure, such as practices that vary between
hospitals. However, through multilevel survival models it
is possible to accommodate the multilevel structure while
accounting for the grouping of lower level units within
higher level units.

One final recommendation is to use Copula models to
model clustered data; however a requirement for these
models is that the sample size for each cluster is the same.
Copula models are fitted by using a two-stage procedure.
The marginal survival functions are estimated, in the first
step, ignoring the groupings within the data. This can be
carried out by using a parametric, semi-parametric or non-
parametric approach. The copula parameters are then es-
timated in the second step. Alternatively, one can use a
one-step procedure by maximizing the likelihood.
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