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Abstract. The aim is to delineate the current state of
the art in non–contact red-green-blue (RGB) camera–
based heart rate and rhythm monitoring in adult popu-
lations in the clinical setting. In addition, the challenges
that still exist for more widespread use of this techno-
logy are outlined, as well as potential ways to overcome
them. A search using Boolean operators was carried out in
PubMed, Google Scholar, IEEE Xplore, CINAHL and Co-
chrane databases using predefined inclusion and exclusion
criteria. Studies within hospital settings that extract heart
rate data from videos of adult patients were identified and
their successes and limitations were analysed from a clin-
ical perspective. Fifteen studies were identified that fit
the inclusion criteria. Many of these studies took place in
emergency department settings, with the postoperative
care unit being another environment that was investig-
ated. Although good correlation between gold standard
measurements and camera-based values were obtained
overall, there are still challenges related to patient move-
ment, changes in illumination and standardisation of tech-
niques. This may be the reason that the use of this tech-
nology is not yet commonplace. Although a lot of valuable
work has been performed highlighting the advantages and
feasibility of using camera-based photoplethysmography
to extract heart rate data in clinical scenarios, challenges
still need to be overcome before these systems can be-
come more mainstream in clinical practise. Therefore
more research needs to be conducted in the field of non-
invasive vital signs monitoring in the clinical setting.

Keywords: Non–Contact Vital Signs Monitoring,
Camera–Based Photoplethysmography, Contactless
Heart Rate Monitoring, RGB-based monitoring

1 Introduction

Non–contact vital sign monitoring (NCVSM) is a relat-
ively new scientific methodology in which health–related
parameters are extracted from patients in a non–contact
manner without the use of any leads or wires. Most
commonly, this is done by means of cameras, namely
red–green–blue (RGB) or thermal imaging cameras, or
more sophisticated equipment such as various types of
radar (Hall et al., 2017; Jiang et al., 2020; Kumar et al.,
2015). The most commonly extracted vital signs include
heart rate and rhythm, respiratory rate, oxygen saturation
and, less commonly, blood pressure (Pham et al., 2022;
Tamura, 2019; Zhao et al., 2016). These are parameters
that are part of many early warning scores and are crucial
in helping healthcare workers determine patient stability
and prioritise care (Patel et al., 2015). This review will
focus on the extraction of heart rate and rhythm data in
real–world scenarios using videos taken by RGB cameras.
This is because RGB cameras are very easy to acquire,
they are not particularly large or bulky, and good quality
videos can be obtained with minimal expense and person-
nel training. Therefore, such vital sign extraction should
be easily reproducible by research teams around the globe.

NCVSM has gained increasing interest in the clinical
setting in recent years due to its advantages to pa-
tients and healthcare workers in different clinical settings.
NCVSM systems offer increased comfort to patients who
can be monitored without wires constantly attached to
them, enabling more freedom of movement and less dis-
comfort. In theory, it can also allow monitoring during
periods of time like interventions or physiotherapy, when
traditional monitoring is impractical (Malasinghe et al.,
2019).

In the case of patients with vulnerable skin such as burns
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patients or the very elderly and frail, this can translate to
actual medical benefits in terms of reduced irritation, skin
damage and pain. Transmission of infectious organisms,
which are often resistant to multiple drugs and pose a
great problem in healthcare systems at present, is also
reduced between patients. This is because the risk of
leads and wires being inadequately disinfected between
subsequent patient uses is eliminated (Boric–Lubecke et
al., 2015; WHO., 2009).

For healthcare workers, using NCVSM means that there
is a reduced need to be constantly checking that leads and
wires are appropriately attached, disconnecting and recon-
necting them every time that patients need to move from
their bed or every time these leads get inadvertently dis-
lodged. This saves time in already busy clinical scenarios.
The advent of the COVID–19 pandemic has highlighted
this even more, since healthcare workers need to fully don
and doff every time that they need to enter the patient’s
area of a COVID positive individual. Apart from this being
very time consuming, it also leads to wastage of personal
protective equipment, which is expensive, detrimental to
the environment and is often in short supply (Bella et al.,
2021; Phua et al., 2020; Tsai et al., 2020).

NCVSM also allows patients to be monitored in remote
locations such as their homes or quarantine facilities. This
is another need that has come to the forefront during
the pandemic. With overwhelming numbers of patients
becoming infected with a disease about which little was
initially known, many needed close monitoring since, al-
though their health situation might be stable at the time
of presentation to medical services, it could quickly and
unpredictably deteriorate especially in patients with un-
derlying comorbidities. The possibility of close monitor-
ing while the patient remains at home is very useful in
this scenario since it allows hospital beds to be reserved
for patients who need active medical intervention. How-
ever it is obviously impractical for patients to be wearing
leads at all times, and help may not always be available to
troubleshoot leads that have come off or become tangled
or displaced (Rohmetra et al., 2023; Watson et al., 2020).

The principle by which heart rate and rhythm data is
extracted from videos taken using RGB cameras is termed
photoplethysmography (PPG). Haemoglobin present in
the blood vessels located underneath the surface of the
skin will absorb wavelengths of visible light within the
green spectrum, reflecting those in the red spectrum.
These absorption peaks correspond to the fresh influx of
oxygenated blood from the heart that happens with each
beat, and may be enhanced and extracted by the applica-
tion of various filters and algorithms (Antink et al., 2019;
A. J., 2007).

Videos taken using RGB cameras usually include areas

of the skin from where PPG signals may be extracted,
most commonly the face or a part of it, and sometimes
limbs and neck regions. The selected area for signal ex-
traction is termed the region of interest (ROI), and was
traditionally manually selected by the data analyst from
video segments or images to yield the best results. Newer
algorithms are able to select the best ROI automatically
and track it throughout the video sequence, using meth-
ods such as, for example, the Kanade–Lucas–Tomasi al-
gorithm commonly referred to as KLT (Chen et al., 2019;
W. et al., 2018).

Green filters applied to the images in a video frame can
help enhance the signal and multiple algorithms are used
to recognise the pulsatile waveform associated with heart
rate activity (Tamura et al., 2014). Some examples in-
clude: the Fast Fourier transform (FFT), which can break
down the noisy PPG signal into its component parts and
extract the parts of interest in terms of heart rate (C.,
2022); Eulerian Video Magnification (EVM), which de-
composes the sequences in videos and magnifies the parts
of interest to the operator; and Principal and Independent
Component Analysis (PCA and ICA respectively), which
seek to extract individual components and differentiate
them from other signals which are considered unneces-
sary noise (Jaadi, 2022; Lauridsen et al., 2019; Talebi,
2022).

The most recent algorithms are based on a machine
learning paradigm, termed convolutional neural networks
(CNN). These are machine learning algorithms that may
be trained to recognise particular components from videos
and images, in this case the PPG signal, using training
data where the ground truth corresponding values are also
provided. Once trained, CNNs are able to extract the
signals they have been trained to recognise, from new
video clips presented to them. These networks have great
potential in the field of NCVSM and they are becoming
increasingly complex (Albawi et al., 2017; Saha, 2022;
Zhan et al., 2020).

This clinical review aims to describe studies published
within the last decade that deal with RGB video camera
use in extracting heart rate and rhythm data in real world
clinical and hospital scenarios, while delineating some of
the more significant limitations which prevent their wide-
spread use at present and possible directions for improve-
ment.

2 Methods
A systematic search was carried out on academic search
engines including PubMed, Google Scholar, IEEEXplore,
CINAHL and Cochrane. In the case of Google Scholar, the
first 200 results returned were analysed. The search term
used was “(hospital OR patient) AND (RGB) AND (vital
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signs OR heart)". The following inclusion and exclusion
criteria were predetermined for the articles encountered
during the search.

Inclusion criteria included studies with patients above
18 years of age, that took place within hospital or clinical
settings, recruited patients with documented pathology or
symptoms of pathology, include the use of RGB cameras,
measured heart rate or rhythm as vital signs and have
been published in peer–reviewed journals in the English
language since 2012.

Exclusion criteria were the following: studies including
only participants below eighteen years of age or who were
healthy without symptoms or documented pathology out-
side clinical or hospital environments; if the focus is on
screening for diseases in general; if the studies did not
make use of RGB cameras, did not include extraction of
heart rate or rhythm data.

3 Results
The PRISMA diagram depicts the results of the search
criteria (figure 1). Fifteen papers met all inclusion criteria
and were included into the final analysis of data for this
review.

The most common clinical areas where NCVSM was
implemented include the emergency department and the
post–operative care unit, however other interesting set-
tings such as general medical wards and haemodialysis
units are also represented (Huang et al., 2022; Malmberg
et al., 2022; Rasche et al., 2016; Tarassenko et al., 2014;
Wedekind et al., 2017). The studies included in this re-
view were divided according to the environment in which
they were undertaken in order to enable analysis of the
limitations encountered in each setting.

One of the identified papers for inclusion in this re-
view is a systematic review itself, and will be described
separately since it does not fit into any specific category
(Antink et al., 2019). It focused on NCVSM between
the years 2016 and 2018. It included 116 studies, how-
ever only 16 of these included patients with actual med-
ical conditions, and most of these studies recruited small
groups of participants of 20 persons or less. These are
small sample sizes, however over the years it is noted
that study cohorts have increased in size as well as in
the variety of diseases and environments studied. Most
camera–based studies included in that systematic review
used more sophisticated cameras as opposed to consumer
grade equipment, thereby potentially increasing complex-
ity and hiking costs. Although results obtained in terms of
accuracy were acceptable, Antink et al. (2019) noted the
lack of standardisation available for determining what is
in fact an acceptable level of accuracy for NCVSM mon-
itoring in the clinical setting. Another issue is the lack

of data and algorithm sharing between different teams,
which would enable one team to build further on what
another has achieved. Issues that prevent this include the
often-sensitive nature of videos that show vulnerable pa-
tients and institutional data access regulations.

NCVSM in the Triage of Infective Patients

The COVID-19 pandemic has brought with it surges of
patients presenting to the Emergency Department with
suspected symptoms, not all of whom required immedi-
ate medical care, or indeed any medical care at all. Triage
of patients according to the severity of their medical con-
ditions will allow prioritisation of care, however it is often
time consuming and requires a lot of resources which may
be in short supply in a time of crisis. The idea of triaging
of patients who present with symptoms of potentially con-
tagious viral illness, however, precedes the COVID–19
pandemic, with influenza being the typical yearly culprit
that makes these services necessary (F.T.Z. et al., 2021;
Wang et al., 2020).

Three teams of researchers applied camera–based PPG
to infectious disease screening, including patients with
documented pathology or symptoms thereof, in the study
cohort (Huang et al., 2022; Malmberg et al., 2022; Ne-
gishi et al., 2020). Negishi et al. (2020) included forty–
one subjects, among whom were 22 patients with seasonal
influenza, focusing on screening them for elevated tem-
peratures but adding in respiratory rate and heart rate
to increase the sensitivity of detection. This is because
elevated temperature can easily be masked by simple anti–
pyretic medication, which is one of its main criticisms as a
screening test for contagious illness. Increased heart rate
and respiratory rates, which are also common markers of
viral illness, are much more difficult to hide. Tapered win-
dow and signal reconstruction were used to reduce the
effect of background noise, with MUSIC algorithm used
to extract heart rate values, obtained a root mean square
error (RMSE) value of 5.93 beats per minute (bpm) (Ne-
gishi et al., 2020).

Huang et al. (2022) as well as Malmberg et al. (2022)
focused on patients presenting with COVID symptoms to
emergency settings. In the case of (Huang et al., 2022)
an RGB camera was incorporated into a robotic device
named Dr Spot, which was able to navigate rough terrain
to cross over to a tent where potentially contagious pa-
tients were being triaged. Healthcare workers were able
to operate Dr Spot remotely, reducing potential exposure
and wastage of personal protective clothing. The fore-
head and cropped parts of the face were used as the ROI
since they yielded the most accurate results, providing a
mean absolute error (MAE) of 7.5 bpm. POS algorithm
was used enabling the distinction between the pulsatile
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Figure 1: PRISMA diagram, detailing included and excluded papers and the reasons for their exclusion from data analysis.
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PPG signal and surrounding noise sources. The system
was successfully used for triage being able to read heart
rates of between 50 and 160 bpm (Huang et al., 2022).

Malmberg et al. (2022) similarly extracted heart rate
data from a cohort of suspected COVID-19 patients, with
the study sample comprising 214 individuals, mostly fe-
male and of Caucasian skin tone. Videos of the patients’
faces were obtained under ambient lighting as well as un-
der red lighting using an LED and using near–infrared
detection. An unspecified AI algorithm was used to ex-
tract PPG signals and comparison with ground truth data
obtained a MAE of 1.4bpm, making this method the
most accurate of the identified studies in this section
(Malmberg et al., 2022).

NCVSM in the Operative and Post-Operative
Setting

The post–operative care unit is an ideal setting for the
study of NCVSM, since the lack of leads and wires will
enhance patient comfort. The relatively high patient
turnover also means that inadequate disinfection of leads
and wires will result in infection of several individuals.

Trumpp et al. (2018) were the only team identified for
this review who tackled the issue of NCVSM in the oper-
ating theatre. This environment is ideal for the study of
such new technologies because patients are immobile and
most sources of noise such as ambient illumination are
controlled. Access to an adequate ROI, however, may
be problematic in cases where surgical drapes cover most
of the patient’s face and neck, highlighting the need to
explore further ROIs. Trumpp et al. (2018) successfully
extracted heart rate data from 41 intra-operative patients
using RGB and near infrared cameras for 95% of the time
that videos were taken, using Bayesian classifiers to seg-
ment and track the relevant ROIs over subsequent video
frames. Application of a green filter enhanced the sig-
nal although constant ambient illumination over the ROI
was still required for successful results. Ten second delays
were experienced in obtaining PPG values, which may be
significant in the case of unstable patients and complex
surgeries. The quality of signal obtained reflects on the
adequacy of microvascular perfusion and therefore could
potentially be used to provide information to anaesthetists
to titrate vasoactive infusions (Trumpp et al., 2018).

The effects of several vasoactive agents in the post-
op cardiac care unit were also investigated in a separate
study (Trumpp et al., 2017). PPG signals were obtained
from patients who were on different infusions to maintain
blood pressure and their effects on pulse pressure signals
were obtained. Not surprisingly, the effect on PPG was
related to the vasoactive effects of the drug, with pa-
tients on glyceryl trinitrate (GTN) with higher haemo-

globin levels showing better PPG extraction due to in-
creased dermal microvascular perfusion. Noradrenaline
proved to have the opposite effect due to its vasocon-
strictive effects (Trumpp et al., 2017).

Post-op cardiac surgical patients were also monitored
for extraction of PPG signals in two separate studies (Ras-
che et al., 2016; Wedekind et al., 2017). Between both
studies, 88 patients were included, the majority of who
were still intubated and mechanically ventilated. Several
algorithms were used to extract PPG data from videos
which were mostly around 30 minutes long with manu-
ally selected ROIs to optimise the obtained signal. Blind
source separation (BSS) was used to distinguish the heart
rate signals from other sources of background noise as
well as PCA and ICA. A mean absolute error (MAE) of
5bpm was obtained for 83% of videos, however, changes
in illumination, patient motion and hypotension negatively
impacted results (Rasche et al., 2016; Wedekind et al.,
2017).

NCVSM in the general medical ward

General medical wards are adequate environments for
testing NCVSM technologies since patients admitted
there often present with multiple complaints and under-
lying comorbidities, are often mobile and able to consent
to participation and the environment is relatively uncon-
trolled. This allows for proper real–world testing of various
conditions.

Several teams of researchers focused on different gen-
eral ward settings in extracting heart rate data from RGB
videos of patients. Ge Xu et al. recruited 38 patients with
an average age of 40 years who had been suffering from
diabetes and ischaemic heart disease for a period of three
to five years (Xu et al., 2022). PPG signals proved harder
to obtain from patients who had less well controlled dis-
ease, most likely due to the sclerotic effects that these
conditions have on dermal microvasculature. Chromin-
ance (CHROM) was used for denoising of the signal and
bandpass filtering allowed selection of the frequencies of
interest (Xu et al., 2022). Patients in atrial fibrillation,
defined as an irregularly irregular heart rhythm, proved
harder to extract PPG signals from. Similar issues were
observed by Couderc et al. (2015) who recruited 11 pa-
tients with known atrial fibrillation presenting for elective
cardioversion. Ventricular ectopic beats were missed on
PPG signals when compared to ground truth ECG data,
however, with a 20% error rate for the overall heart rate,
the team postulated that this technique was feasible for
monitoring of atrial fibrillation and identification of pa-
tients at risk of adverse sequelae such as cerebrovascular
accidents (Couderc et al., 2015).

The accuracy of consumer grade mobile applications
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that use non-contact PPG to estimate the user’s heart
rate was investigated (Coppetti et al., 2017). A total
of 108 patients were recruited to trial these applications
(namely “What’s My Heart Rate?" and “Cardioversion")
from a chest pain unit, obtaining respective correlation
coefficients of 0.62 and 0.60 with pulse oximetry and gold
standard ECG, respectively. These values were even lower
when variation in illumination was observed or when ta-
chycardia was present, and highlight the need for further
standardisation and upgrades in relation to accuracy prior
to these methods being made use of for medical purposes
(Coppetti et al., 2017).

Elderly patients had multiple comorbidities including
diabetes mellitus, hypertension and atrial fibrillation. In
one particular study, the KLT algorithm was used for ROI
tracking during periods of time when patients were moving
(Yu et al., 2020). Recordings were obtained just before
and after physiotherapy sessions, obtaining a root mean
square error (RMSE) of 3bpm. However, monitoring dur-
ing the actual physiotherapy session was not performed.
Near infrared cameras were also used in this study and
were considered to be good options for the geriatric pop-
ulations since they do not require additional light sources
for proper functioning, especially in dim light conditions
and darkness. Adding a light source could worsen delirium
in at–risk populations since their circadian rhythm could
be interrupted (Yu et al., 2020).

Sun et al. included a cohort of 11 subjects in a rehab-
ilitation hospital obtaining PPG data via a robotic device
termed Vital SCOPE that also included respiratory rate
and temperature (Sun et al., 2018). Interestingly, the
ROI chosen for this study was an area close to the ca-
rotid artery in the neck. Pearson correlation coefficient
values of 0.91 were obtained when compared with ECG
data (Sun et al., 2018).

Another study focused on a group of 46 patients re-
ceiving haemodialysis, also with no restrictions to pa-
tient movement or ongoing procedures (Tarassenko et al.,
2014). In this case, autoregressive modelling and pole
cancellation was used to extract PPG signals obtaining
MAE of 3bpm in segments where patients were still. How-
ever, motion and ambient illumination changes negatively
impacted the results (Tarassenko et al., 2014).

One small but interesting study was performed by Lin
et al. (2019), who studied extraction of PPG signals in a
series of three patients undergoing radiotherapy for uveal
melanoma. Part of their thermoplastic mask was removed
to uncover the cheek to be used as an ROI. Eye move-
ment was also allowed to be monitored by this technique
that used a camera and a dedicated LED light source
above the patient. Manual ROI selection was performed
and the KLT algorithm was used to track the ROI over

time, although movement during a radiotherapy session
needs to be minimal to allow targeted treatment and pre-
vent collateral damage to nearby structures. MATLAB
software based on FFT was then used to extract the final
PPG signal. With this technique, MAE of 2.37bpm was
obtained with the ground truth data being obtained from
pulse oximetry. This is indeed a very accurate value (Lin
et al., 2019).

Table 1 summarises the salient points of the studies
included in this review. The studies are arranged in chro-
nological order and details pertaining to the environment
they were conducted in, the included study cohort and the
best results obtained are provided.
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4 Discussion
The use of NCVSM is advantageous to patients and
healthcare workers alike, due to its ability to increase pa-
tient comfort and reduce risk of transmission of multidrug
resistant organisms between patients (Malasinghe et al.,
2019; WHO., 2009). In a time of crisis such as the on-
going COVID pandemic, when healthcare resources are
overwhelmed, the ability to monitor patients remotely and
identify those patients who require actual admission and
those others who can be treated at home, will enable
better allocation of resources. NCVSM also allows for
reduced direct contact between healthcare workers and
potentially infective patients, as demonstrated by several
studies that devised robotic equipment capable of obtain-
ing vital signs from patients while healthcare workers con-
trol it from a safe distance (Lin et al., 2019; Malmberg et
al., 2022). This is beneficial both in reducing the risk of
contagion of healthcare workers and the use of personal
protective equipment which healthcare workers must don
every time they approach infected patients, including the
replacement of displaced monitoring leads. Such protect-
ive clothing is expensive, detrimental to the environment
and is also often scarce (Bella et al., 2021; Phua et al.,
2020).

As evidenced by the studies included in this review,
camera–based PPG monitoring of cardiovascular para-
meters is capable of being performed to adequate stand-
ards in many different real world clinical scenarios. In some
cases variations from ground truth data considered as the
current gold standard was of less than 2bpm (Malmberg
et al., 2022). However, these excellent results only apply
to situations where the videos are obtained under ideal-
ised conditions with constant illumination, patients who
are not moving, and ROIs which are fully visible. Delays
in obtaining values still exist, and this can be an issue in
critical scenarios when patient deterioration occurs within
a matter of seconds (Trumpp et al., 2018). Once condi-
tions start to become less than ideal, which is the usual
situation in the real world, the accuracy of results starts to
deteriorate. This highlights a need for further advance-
ments in the algorithms (Tarassenko et al., 2014) such
as to address these sources of error and unsatisfactory
performance.

Many of these systems also require to be physically
close to patients in order to be able to extract PPG data
from videos. In one study, the robotic device was placed
specifically two metres away from patients. While this is
often not an issue, in cases where there is clinical equip-
ment surrounding the patient’s bed, it may be a problem
to find adequate space for the monitoring equipment too
(Huang et al., 2022). Overhead setups may overcome
this problem especially when the patient is confined to

a bed, but will incur costs of the infrastructural changes
necessary to enable the attachment of cameras. When
the patient is not in bed, such as during mobilisation to
the armchair, the issue of the face (which is the most
commonly used ROI) not being visible will come into play,
highlighting the need for more ROIs to be available for
data extraction.

There is also a notable lack of standardisation of tech-
niques and sharing of datasets which would allow teams
to build on each other’s work, thereby accelerating im-
provements (Antink et al., 2019). This is understandable
since videos of patients taken with RGB cameras are con-
sidered sensitive data and patients featured in them are
easily identifiable. Therefore sharing of data needs to be
governed by strict laws such as the General Data Protec-
tion Act in Europe and corresponding legislation in other
geographical parts of the world (Mondschein & Monda,
2019). However, new frameworks could be set up that
would allow such data sharing to take place between ac-
credited institutions with patients’ consent.

Over the years, the number of studies that consider real
world clinical scenarios have increased in number as well
as in the size of the recruited cohorts. This is benefi-
cial since the sample of pathologies that patients present
with and their underlying comorbidities are being increas-
ingly represented, with common conditions such as dia-
betes, ischaemic heart disease and atrial fibrillation being
increasingly included (Xu et al., 2022). The irregularity
of microvasculature caused by these diseases has been
noted to cause issues in obtaining accurate PPG signals,
and this begs the question of what will be the effects of
further comorbidities such as skin conditions and other
diseases on PPG signals (Climie et al., 2019).

Although this review deals specifically with patients in
hospital settings, interesting applications for NCVSM ex-
ist also for long term remote monitoring at home, for
patients with chronic disease or the elderly who live alone
in the community (Liu et al., 2019; Londei et al., 2009;
Nasution & Emmanuel, 2007). This could provide peace
of mind to many patients who would feel reassured that
healthcare workers are monitoring them and will be able
to help them should they become unable to call for help
themselves. It would also allay the burden of outpatient
work which often involves simply following up otherwise
stable patients. Obviously, issues of privacy and trans-
mission of sensitive data would need to be tackled. Such
technologies are already being trialled in some instances,
such as for the detection of falls in the community (Boric–
Lubecke et al., 2014; B. J., 2021; Liu et al., 2019; Londei
et al., 2009).
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5 Conclusion
In this review, there is an outline of the current state of
the art in camera–based PPG for heart rate and rhythm
monitoring in real world clinical scenarios. Although many
significant advances have been made in the past several
years, obtaining reasonably good results in idealised video
segments, there is still more to be done in terms of ac-
curacy in non-ideal conditions and in pathological cases
before these technologies can be rolled out for widespread
use in clinical practise.
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