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Abstract. Preconditioning is complex, strong, evolu-
tionary conserved cellular survival mechanism that is ex-
hibited by different species as well as in different organs.
A focused approach on microarray evaluation of precon-
ditioning will be used to highlight the lack of clarity in
investigating this complex phenomenon, exacerbated by
the absence of a standardised terminology. This paper is
an extensive review of the scientific literature on the in-
vestigation of preconditioning by means of a microarray
approach. It dissects the design of the experiments used
to investigate such phenomenon and classifies the com-
plex factors in investigating preconditioning. It presents
an attention to detail to the lexicon with a suggested
classification and terminology that describes precondi-
tioning that may help stratify and clarify research in
this field.
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1 Introduction
Preconditioning is a complex, evolutionary conserved,
cellular survival phenomenon. The protective effect of
preconditioning is described in different species as well
as in different organs of the same species such as the
heart (Correa-Costa et al., 2012; Jassem et al., 2009;
Jun et al., 2011), the lung (Jun et al., 2011), the kid-
ney (Correa-Costa et al., 2012), the liver (Jassem et
al., 2009), the intestines (Wang et al., 2009), the retina
(Kamphuis et al., 2007), the spinal cord (Carmel et al.,
2004; Kim et al., 2008), the brain (Hirata et al., 2007;
Kawahara et al., 2004) and skeletal muscle (Harralson et
al., 2005; Moses et al., 2005). It is also possible to trans-
fer this protective effect from a preconditioned rat heart

to that of a naive rat heart using the coronary effluent
(Serejo et al., 2007). The same effect has been shown in
rabbits (Dickson et al., 1999; Leung et al., 2014).

This phenomenon falls under the wider term of
hormesis. This term was first described by Southam
et al. (1943) and recently revived by Calabrese (2004).
Hormesis refers to a pattern of cellular responses to
stressors whereby a beneficial effect results from expos-
ure to low doses of agents or intensities of environmental
factors that are otherwise toxic or lethal when given at
higher concentration or intensities (Krenz et al., 2013).
Murry et al. (1986) were among the first to report a type
of preconditioning known as ‘ischemic preconditioning’
and referred to it as a ‘rapid, adaptive response to a
brief ischaemic insult, which slowed the rate of cell death
during a subsequent prolonged period of ischemia’. In
a dog heart model, they were able to prove that this
phenomenon could reduce the infarct size by 75%. Four
years later Kitagawa et al. described ischaemic precon-
ditioning in the brain of gerbils (Kitagawa et al., 1990).

Understanding one of the strongest cellular defence
mechanisms is challenging for many reasons. A focused
approach on microarray evaluation will be used to high-
light the lack of clarity in investigating this complex phe-
nomenon, exacerbated by the absence of a standardised
terminology. The following is a review of the scientific
literature investigating preconditioning by means of a
microarray approach and presents an attention to detail
to the lexicon with a suggested terminology describing
preconditioning that may help stratify and clarify re-
search in this field.
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Figure 1: Showing: A (red) – Challenge. (Single or separated
by two reperfusion episodes) B (blue) – Early Protection from
Insult C (green) – Late protection from Insult

2 Preconditioning, gene expression and
microarrays

Preconditioning is triggered by a stimulus, which will
be forthwith referred as the ‘challenge’. This challenge
will protect the cell from a more potent ensuing event
from now on referred to as the ‘insult’. The protect-
ive effect is bi-temporal and is exhibited in local as well
as in remote tissue (figure 1). Thus, preconditioning
can be described as having four phases of protection.
The first phase of protection occurs within minutes of
the insult A (Red in figure 1), lasts 2 to 3 hours (B)
(Blue in figure 1) and is commonly referred to as clas-
sic preconditioning (Bolli, 2000). The second phase of
protection comes on at about 24 hours after the chal-
lenge and lasts up to 72 hours (C) (Green in figure 1)
and is commonly known as the second window of protec-
tion (SWOP) (X. M. Yang et al., 1996). The above two
phases describe local protection. The protective effect
is transmitted to remote organs giving rise to two other
phases commonly known as early and late remote pre-
conditioning (Leung et al., 2014; Przyklenk et al., 1993).
Towards the beginning of the 1990’s the main focus of in-
vestigation was on the classic phase of preconditioning.
Thornton et al. (1990) reinforced this drive by show-
ing that the inhibition of protein synthesis did not alter
myocardial protection afforded by preconditioning. The
receptor-based response seen in classic preconditioning
is a vital rapid response to the stressor (challenge) and
can be considered a ‘knee jerk or reflex’ response that
is not dependent on gene transcription. The delayed re-
sponse which was described in 1995 by Yellon et al. is
however a complex gene expression response, possibly
an ‘intelligent’ response with the capability of anticip-
ating potential ensuing threats (insults). Two main ge-
netic approaches have been used in studying this aspect
of preconditioning; candidate gene approach and gen-
ome wide analysis. The former is built around a hypo-
thesis about the role of particular pathways such as in-
flammation, followed by a search for changes in specific
gene expression levels related to inflammation by means

of tools such as the polymerase chain reaction (PCR).
These are in vitro models that are very useful because
biochemical molecules can be used to alter the pathway
under investigation and study its effect and relevance.
A top to bottom approach using genome wide analysis
interrogating the expression of thousands of genes in a
single experiment such as in microarray analysis or next
generation sequencing (NGS) as compared to the latter
reductionist approach is an important tool in uncovering
key molecular events in the cell’s response to precon-
ditioning. Limitations of these gene expression stud-
ies include, restricted time points, limited and biased
transcripts represented on the array, the nature of the
sample analysed, as well as an absence of clearly defined
models (Kawahara et al., 2004).

3 Complex factors in preconditioning
Several factors that make preconditioning a complex
process to study can be identified. These can be broadly
subdivided into intrinsic and extrinsic factors. Intrinsic
factors relate to the nature of the phenomenon and
include; a wide spectrum of challenges, a bi-temporal
nature and a spatial element. The extrinsic factors re-
late to the diverse experimental designs adopted by re-
searchers, terminology and semantics used in describing
the phenomenon and the overwhelming information gen-
erated by recent technology.

3.1 Intrinsic Factors
The intrinsic factors are inherent to the phenomenon
and thus are not amenable to alteration however when
identified they can be approached systematically fa-
cilitating a holistic approach in researching the phe-
nomenon.

3.1.1 Wide spectrum of challenges
The first intrinsic factor is the wide spectrum of chal-
lenges that can induce preconditioning leading to the
activation of diverse complex networks culminating to a
common effect of enhanced cellular tolerance. These
challenges include; hypoxia (Bernaudin et al., 2002),
hyperthermia (Du et al., 2010), hypothermia (Nishio
et al., 2000), epileptic fits (Sasahira et al., 1995) and
drugs such as acetylsalicylic acid (Riepe et al., 1997).
These are not simply challenges exclusive to the labor-
atory but have also been studied in the natural setting
in humans. This is thought to occur in patients with
ischaemic heart disease who exhibits recurrent anginal
chest pain (Costa et al., 2005; Wall et al., 1994) or in pa-
tients with cerebrovascular disease who exhibit transient
ischemic attacks (Moncayo et al., 2000). The different
challenges studied in different species under different ex-
perimental conditions looking at different phases of pre-
conditioning leads to a multiplier effect on the number
of complex variables.
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3.1.2 Bi-temporal nature

The second intrinsic complex factor is the bi-temporal
nature creating three scenarios for investigation the
third being the processes happening between the first
and second instance. Each scenario is a complex event
to study in its own merit. The preconditioning chal-
lenge invokes an early response with a very rapid mani-
festation of cellular protection that lasts a few hours
and a late response or second wave becoming active at
24 hours from the initial challenge and lasting 72 to
96 hours (figure 1). The first wave is dependent on
preformed molecules and activation of receptors such
as adenosine A1/A3 (Murphy et al., 2008; Tsukamoto
et al., 2005), opioid receptor activation (Schultz et al.,
1995) and to a lesser degree bradykinin B2 (Wall et
al., 1994). These molecules in turn activate down-
stream signalling cascades the earliest being protein
kinase C (PKC). Downstream targets of PKC activation
include 5’-nucleotidase, glycogen synthase kinase-3B
(GSK-3B), mitochondrial permeability transition pore
(mPTP), ATP-sensitive potassium channels in plasma
membranes and mitochondria, proteins involved in ap-
optosis (Bax/Bad and Bcl-2), and adenosine A2b recept-
ors (Costa et al., 2005; Hausenloy et al., 2003; Murphy
et al., 2008; Tsukamoto et al., 2005; X. Yang et al.,
2011). This does not exclude the possibility of an early
genomic response but this is overshadowed by studies
looking at the biochemical response. This is in contrast
to the exponential increase in the literature regarding
the extensive genetic response in the SWOP. A highlight
of this response is the very important up-regulation of
an intrinsic pro-survival genetic program that has been
shown to attenuate apoptosis (Stein et al., 2007).

Intuitively the bi-temporal nature of the phenomenon
drives research into these two time points potentially un-
dermining inquiry into the interim period that possibly
involves cellular memory. It is very plausible that the
second wave involves the activation of a cellular memory
mechanism allowing the cell to mount the response 24
hours after the initial preconditioning stimulus. This
hypothesis is supported by evidence of cellular memory
from studies of a similar phenomenon described in plants
known as ‘priming’ (Pastor et al., 2013).

3.1.3 Spatial element

The third intrinsic factor is the spatial element. The
protective effects are noted both locally at the site of
preconditioning as well as in remote organs involving
complex processes of cell signalling (Guo et al., 2019).
Thus distant organs are somehow receiving the precon-
ditioning trigger allowing them to respond effectively to
the challenge, another mechanism that is still not fully
understood (Billah et al., 2018). The remote organ pro-
tection effect is manifested for both temporal events that

is the classic and SWOP. This remote effect introduces
three scenarios with their own complex factors. The
first is the local mechanism by which a challenged organ
creates a signal that conditioning has happened. The
second scenario is the transmission of this signal that
is thought to involve both neural and humoral factors
(Lim et al., 2010; Shimizu et al., 2009) and the third is
the interpretation of this signal by distant organs and
the mounting of a protective response.

3.2 Extrinsic factors
Studies of preconditioning using microarray techniques
were chosen as the main criterion in order to simplify
and focus analysis on a specific manageable scenario.
Twenty-eight studies from PubMed satisfied the cri-
terion of microarray and preconditioning and are shown
in table 1. The extrinsic factors will be explored further
by using the 28 studies referred to in table 1.

3.2.1 Classification and terminology
The first extrinsic factor is process classification and ter-
minology. Using gene expression as the scenario it is
clear from the literature that it is challenging to the
unfamiliar reader to understand what phase of the pre-
conditioning phenomenon is under investigation. This
is confounded by the fact that different authors use dif-
ferent terminology to describe the same phases of pre-
conditioning. In order to clarify and simplify this is-
sue of preconditioning phases it is suggested that they
are classified into four different phases based on tem-
poral and spatial factors and that a standard termino-
logy with an abbreviation system is adopted. The tem-
poral response can be subdivided into two parts, early
and late. The early response, referred to as ‘classical’,
‘immediate’, ‘acute’ or ‘early phase’ preconditioning is
very rapid and confers tolerance lasting between 2 to 3
hours (figure 1). This is followed by an interim period
where tolerance is not exhibited. The late phase is re-
ferred to as the second window of protection ‘SWOP’,
‘delayed’ preconditioning and ‘late phase’ precondition-
ing sets in at around 24 hours after the initial challenge
and lasts up to 72 hours. Both the early and the late
responses have a spatial component that is local and
remote, transmitting the signal to distant cells and or-
gans. The remote component is known as remote pre-
conditioning. Remote preconditioning is expressed in
both temporal aspects and thus the distant cells exhibit
both early remote preconditioning as well as late remote
preconditioning. Table 2 illustrates current terms used
in describing preconditioning and a proposed classifica-
tion and nomenclature shown in italics that integrates
the different aspects of preconditioning.

The proposed terms and abbreviations would thus be
local early preconditioning (LEPC), local late precondi-
tioning (LLPC), remote early preconditioning (REPC),
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Spatial – Local Spatial – Remote

Temporal – Early
(2 to 3 hours)

Local early PC (LEPC) Remote early PC (REPC)

Classical PC Remote PC
Immediate PC Remote ischemic PC
Acute PC
Early phase PC

Temporal – Late
(24 to 72 hours)

Local late PC (LLPC) Remote late PC (RLPC)

Second window of protection Remote delayed PC
Delayed PC
Late Phase PC

Table 2: Current and proposed terms describing preconditioning (PC). The terms in italics are alternative terms that are found
in the literature.

System Species Type of
challenge

Challenge
protocol

Challenge -
insult interval

Type of
insult PC phase 

Genes, Fold
Change &

Platform Setting

Experimental
Design

First author,
Journal & Year

Brain

Cerebral
cortex

Mus
musculus

8-10  weeks
male

C57BL/6J

MCAO 
Single 15-minute

episode of
MCAO

3 days 60 minutes
MCAO

Second
phase/
SWOP 

7500 genes 

2.2 fold 

Affymetrix
MG_U74AV1 

- Challenge at 24 
hours                  
- Insult at 24 hours 
- Insult altered by 
challenge 3 days 
before 

Stenzel-Poore,
Lancet, 2003 

Hippocampus
(CA1 cells)

Rattus
norvegicus

      
male 

Wistar
SPF

BCAO Single 2-minute
episode of BCAO 3 days 6 minutes

BCAO

Second
phase/
SWOP

7000 genes 

2 fold  

Affymetrix
RG_U34A 

- Challenge at 1, 3, 
12, 24 & 48 hours   
- Insult at 1, 3, 12, 
24 & 48 hours       
- Insult altered by 
challenge 3 days 
before  

Kawahara, J
Cereb Blood Flow

Metab, 2004 

Frontoparieta
l cortex

Rattus
norvegicus                
adult male 

SHR

kwaa

MCAO
Single 10-minute

episode of
MCAO

3 days 60 minutes
MCAO

Second
phase/
SWOP

1263 genes 

2 fold 

Affymetrix
RG_U34

- Challenge at 3, 6, 
12, 24 & 72 hours  
- Insult at 6 hours 
- Insult altered by 
challenge 3 days 
before  

Dhodda, J
Neurochem,

2004   

Cerebral
cortex

Mus
musculus

adult male

Swiss(not
starved)

Hypoxia
by 8%

oxygen in
nitrogen

Single 1 or 6
hour episode of

hypoxia 
12,18 & 24 hours Permanent

MCAO

Second
phase/
SWOP

6000 genes

1.5 fold 

Affymetrix
MG_U17A

- 2 challenges at 12,
18, 24 & 72 hours
- Insult at 6 hours 
- Insult altered by 
challenge 12, 18 & 
24 hours before

Tang, Neurobiol
Dis, 2006 

Hippocampus
(CA3 sector)

Mus
musculus 

C57BL/6

Seizure by
intra-

peritoneal
kainic acid 

Single episode of
seizures 1 day

Status
epilepticus
by intra-
amygdala
kainic acid

Second
phase/
SWOP

39000 genes
 

1.8 fold 

Affymetrix 430 2.0 

- Challenge at 24 
hours
- NA
- Insult altered by 
challenge 1 day 

Hatazaki,
Neuroscience,

2007 

Table 1: Showing a description of preconditioning microarray experiments according to system, species, type of challenge, challenge
protocol, challenge-insult interval, type of insult, preconditioning phase, genes, fold change and microarray platform setting, gene
expression profile analysis and fist author, journal, year and reference number. (SHR – spontaneously hypertensive; MCAO –
middle cerebral artery occlusion; BCAO bilateral cerebral artery occlusion ; HBO – hyperbaric oxygen; CpG – cytosine-guanine;
LPS - lipopolysaccharide; OGD – oxygen-glucose deprivation; CAO – coronary artery occlusion; IPC – ischemic preconditioning;
APC – anesthetic preconditioning; MAC – minimum alveolar concentration: SMAO – ; BP – blood pressure; NA – Not Available;
PC – Preconditioning and SWOP – second window of protection (table continues overleaf, 1/6)
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chip before

Cerebral
cortex

Rattus
norvegicus 

neonatal

Sprague
Dawley

Hypoxia
by 8%

oxygen in
nitrogen
(36°C)

Single 3 hour
episode of
hypoxia

2, 8 & 24 hours Killed NA

30000 genes

1.2 fold 

Affymetrix
Rat230_2 

- Challenge at 2, 8 
& 24 hours
- NA
- NA

Gustavsson, 
Pediatr Res, 2007 

Hippocampus
(CA1 cells)

Rattus
norvegicus

neonatal
male

 
Wistar

HBO
(3.5

atmosphere
absolute)

Single 1 hour
episode of HBO
each day for 5

consecutive days

6, 12, 24 & 72
hours

8 minutes
forebrain
ischemia

First/ classic
& second
phase/
SWOP

20500 genes

Fold change NA 

AgilentDNA Oligo

- NA
- NA
- Insult altered by 
challenge 6, 12, 24 
& 72 hours before

Hirata, Brain Res,
2007   

Forebrain
(global

ischemia)

Rattus
norvegicus

male
Wistar
(fasted)

BCAO Single 3 minute
episode of BCAO 3 days 6 minutes

BCAO

Second
phase/
SWOP

23060 genes

1.25 fold

Affymetrix
Rat230_2

- NA
- Insult at 1, 4 & 24
hours                   
- Insult altered by 
challenge 3 days 
before 

Feng, Brain Res,
2007 

Hippocampus
(CA1 & CA3

sectors)

Rattus
norvegicus

adult male

Sprague
Dawley

Seizures by
intraperito
neal Kainic

acid

Single 20 minute
episode of

seizures on day 1
& day 2

1 day

Status
epilepticus
by intra-
peritoneal
kainate or
pilocarpine

Second
phase/
SWOP

10179 genes

1.25 fold
 

Affymetrix
RAE230A 

- Challenge at 24 
hours 
- Insult at 1 & 3 
days
- Insult altered by 
challenge 1 day 
before

Borges, Neurobiol
Dis, 2007   

Frontal
cortex

Mus
musculus

8-10 weeks

C57BL/6

CpG
oligodeoxy
nucleotide
intraperito

neal
injection

Single episode of
CpG 3 days

MCAO
(time not
specified) 

Second
phase/
SWOP

NA

1.5 fold

 Affymetrix 
MOE430 2.0

- NA
- Insult at 24 hours 
-Insult altered by 
challenge 3 days 
before

Marsh,Stroke,
2009     

Frontal
cortex

Mus
musculus

LPS intrap
eritoneal
injection

Single episode of
LPS 3 days 45 minutes

MCAO

Second
phase/
SWOP

NA
- Challenge at 3, 24 
& 72 hours
- Insult at 3 & 24 

Marsh, J
Neurosci, 2009 

Table 1: Continuation of table 1 (2/6)
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C57BL/6 

1.5 fold 

Affymetrix MOE430
2.0

hours                  
- Insult altered by 
challenge 3 days 
before

Hippocampus

Rattusnorv
egicus

adult
 

Sprague
Dawley

OGD Single 5 minute
episode of OGD NA 10 minutes

OGD NA

NA

1.3 fold

Affymetrix
Rat230_2

- Challenge at 3, 6 
& 12 hours
- NA
- NA            

Benardete, Brain
Res, 2009 

Cerebral
cortex

Mus
musculus

adult male

 C57BL/6J 

MCAO
Single 15 minute

episode of
MCAO

1 day 60 minutes
MCAO

Second
phase/
SWOP

NA

- Challenge at 24 
hours
- Insult at 24 hours 
- Insult altered by 
challenge 1day 
before

Lusardi, J Cereb
Blood Flow

Metab, 2010    

Cortical
neurons (in

vitro)

Rattus
norvegicus

18 day
embryonic

Wistar 

OGD 

Single 15 minute
episode of OGD
alternating with

15 minute
reperfusion for 3

cyles

1 day 120 minutes
OGD

Second
phase/
SWOP

NA

1.5 fold 

Agilent G413 60mer
4x44 

- Challenge at 3 
hours
- NA
- Insult altered by 
challenge 1 day 
before

Prasad, J Mol
Neurosci, 2012 

Heart

Heart 
(in vivo) 

Oryctolagu
s cuniculus

New
Zealand
white
rabbit

Circumflex
branch
CAO

Single 5 minute
episode of CAO
alternating with

5 minute
reperfusion for 2

cycles

NA NA NA

18376 genes

5fold

NA

- Challenge at 5 
hours
- NA
- NA

Simkhovich, Heart
Dis, 2002 

Heart
(Langendorf
isolated &
perfused)

Rattus
norvegicus

male

Wistar

Langendor
ff heart no

flow
ischemia

Single 5 minute
episode of

ischemiaalternati
ng with 5

minutereperfusio
n for 3 cycles

NA

30 minutes
no flow

myocardial
ischemia 

NA

3200 genes

 NA    NA
- NA
- Insult at 2 hours
-NA

Onody, FEBS
Lett, 2003 

Table 1: Continuation of table 1 (3/6)
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Heart
(Langendorf
isolated &
perfused) 

Rattus
norvegicus

male

Wistar

IPC by no
flow

ischemia &
APC by

isoflurance
(1.5 MAC)

IPC - Single 5
minute episode of

ischemia
alternating with

5 minute
reperfusion for 3

cycles APC –
Single 110

minute episode of
isoflurance

NA NA NA

8800 genes

2 fold 

Affymetrix
RG_U34A 

- Challenge at 110 
minutes
- NA
- NA

Sergeev,
Anesthesiology,

2004  

Heart 
(in vivo)

Mus
musculus

10-12
weeks

C57BL/6  

Hind limb
ischemia

by
occlusion
of femoral

artery

Single 4 minute
episode of
occlusion

alternating with
4 minute

reperfusion for 6
cycles

15 minutes & 24
hours Killed NA

NA

1.5 fold

AffymetrixMG_430
A

- Challenge at 15 
minutes & 24 hours
- NA
- NA 

Konstantinov, J
Thorac

Cardiovasc Surg,
2005 

Heart 
(in vivo)

Mus
musculus/

Rattus
norvegicus

male 

ICR/
Wistar

Hypoxia
by a high-
altitude
chamber

(380 Torr)

Single 15 hour
episode of

hypoxia for 2, 4
& 8 weeks

NA NA NA

6144 genes

2 fold

NA

– Challenge at 2, 4 
& 8 weeks     - NA
- NA

Chen, Shock, 2005 

Myocardial,
renal,

intestinal, &
lung

Mus
musculus

adult male

Swiss
Webster

SMAO

 Single 2-minute
episode of SMAO
alternating with

2- minute
reperfusion  for 2

cycles

1 day Killed NA

1176 genes

1.7 fold

NA

- Challenge at 24 
hours
- NA
- NA

Huda, Heart Lung
Circ, 2005    

Heart 
(in vivo)

Rattus
norvegicus 

male

Wistar

NA

Single 5 minute
episode of
ischemia

alternating with
10 minute

reperfusion for 2

10 minutes

40 minutes
ischemia
(type not
specified) 

First/ classic
phase

NA

NA

- NA
- Insult at 30 
minutes               
- Insult altered by 
challenge 10 
minutes before

Canatan, Cell
Biochem Funct,

2008  

Table 1: Continuation of table 1 (4/6)
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cycles CodeLink bioarrays

Blood

Leukocytes

Homo
sapiens 

adult male
and female

Forearm
ischemia

by BP cuff
inflation (2
00mmHg)

Single 5 minute
episode of
ischemia

alternating with
5 minute

reperfusionfor 3
cycles 

NA NA NA

NA

1.5 fold

Affymetrix
HG_U133A 

- Challenge at 24 
hours
- NA
- NA

Konstantinov,
Physiol Genomics,

2004 

Retina

Retina

Rattus
norvegicus

Male

Wistar

Eye
anterior
chamber
induced

pressure by
a 1.7m
head

Single 5 minute
episode of
ischemia

alternating with
24 hour

reperfusion

1 day

60 minutes
of anterior
chamber
raised

pressure

Second
phase/
SWOP

NA

NA

AgilentG4130A

- NA
- Insult at 1, 2, 6 & 
12 hours
– Insult altered by 
challenge 1 day 
before

Kamphuis, Mol
Vis, 2007 

Lung

Lung Rattus
norvegicus

Cessation
of

ventilation
and

perfusion
by

clamping
of

pulmonary
vessels

Single 5 minute
episode of
ischemia

alternating with5
minute

reperfusion for 3
cycles

NA
2 hours of

cold
ischemia

NA

22226 genes

2 fold 

Illumina
Rat Ref-12

expression beadchip 

- NA
- Insult at 1, 3, 6 & 
24 hours
- NA

Jun, J Surg Res,
2011 

Intestines

Small
intestine

(transplant)

Rattus
norvegicus

adult male

Sprague
Dawley

SMAO

Single 10 minute
episode of
ischemia

alternating with
10 minute
reperfusion

10 minutes Transplanta
tion 

First/ classic
phase

4096 genes 

NA

NA

- NA
- Insult at 1 hour    
- Insult altered by 
challenge 10 
minutes before

Wang, J Surg
Res, 2009 

Table 1: Continuation of table 1 (5/6)
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Kidney

Kidney
(in vivo) 

Mus
musculus

male

C57BL/6

No flow
ischemia

by
clamping
of both
renal

pedicles

Single 15 minute
episode of
ischemia 

1 week

45 minute
renal

pedicle cross
clamp

Second
phase/
SWOP

NA

2/3 fold

Agilent 
4x44 K whole

genome microarray

- NA
- Insult at 6 hours 
- Insult altered by 
challenge 1 week 
before

Correa-Costa,
PLoS One, 2012 

Liver

Liver
 (in vivo) 

Homo
sapiens

Pringle’s
manoeuvre
occluding

porta
hepatis by

a
tourniquet

Single 10 minute
episode of porta
hepatis clamping

30 minutes Transplanta
tion

First/ classic
phase 

NA

NA

Affymetrix
HG_U133A

- NA
- Insult at 2 hours 
- Insult altered by 
challenge 30 
minutes before

Jassem, Liver
Transpl, 2009 

Liver
 (in vivo)

Homo
sapiens

Pringle’s
manoeuvre
occluding

porta
hepatis by

a
tourniquet

Single 10 minute
episode of porta
hepatis clamping

NA Transplanta
tion

First/ classic
phase

NA? 

NA

NA

NA

- NA
- Insult at 90 
minutes               
- NA

Raza, Liver
Transpl, 2010       

Table 1: Continuation of table 1 (6/6)
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and remote late preconditioning (RLPC). Another ter-
minological issue is the terms used when referring to
the stimuli used to trigger preconditioning; the main
stressor that is modified by preconditioning. Since many
stimuli can trigger preconditioning and there are differ-
ent methods for achieving this, it would be helpful if
the stimuli used to trigger preconditioning are always
referred to as the ‘challenge’ and the main stressor that
is modified by preconditioning is referred to as the ‘in-
sult’.
3.2.2 Diverse investigational design
The second extrinsic complexity factor refers to the di-
verse investigational design adopted by researchers. In
such a complex process, structure of design using stand-
ard protocols, classification and nomenclature is of ut-
most importance. Different preconditioning challenges
elicit different biochemical and genetic response path-
ways limiting the significance of comparisons between
studies. The different challenges in microarray stud-
ies utilized to induce preconditioning include hypoxia
(MCAO, BCAO, hypoxia chamber, CAO, NFI, HLI,
SMA, FAI, EAIP, CPV and OPH) (Bernaudin et al.,
2002), hyperbaric oxygen (HBO), high altitude (Os-
trowski et al., 2008), oxygen glucose deprivation (OGD)
(Himori et al., 1991; Ito et al., 2000), hyperthermia (Du
et al., 2010), hypothermia (Nishio et al., 2000), lipo-
polysaccharides (LPS) and oligodeoxynucleotide (Huang
et al., 2013; Yu et al., 1999). Other challenges used
in preconditioning experiments but not in these mi-
croarray studies are epileptic seizures (Belosjorow et al.,
1999; Rosenzweig et al., 2007; Sasahira et al., 1995),
cortical spreading depression (Kobayashi et al., 1995),
chemical preconditioning with compounds such as 3-
nitropropionic acid (3-NP) (Riepe et al., 1996), antibi-
otics such as erythromycin and kanamycin (Huber et al.,
1999), acetylsalicylic acid (Riepe et al., 1997), N-methyl-
D-aspartate (NMDA) (Himori et al., 1991), doxorubi-
cin (Ito et al., 2000), 2-deoxyglucose (Yu et al., 1999)
and sulfur dioxide (Huang et al., 2013). Microarrays in-
terrogate a huge number of genes that may vary from
one thousand to thirty-five thousand genes generating
a huge amount of data. A comparison of different mi-
croarrays would be a good approach to understand the
genomic response in preconditioning but the diversity
of challenges used in this field is an important limiting
factor.

Another important factor in design apart from the
type of challenge is the duration and frequency of the
challenge. The duration of the hypoxic challenge used
by different investigators varies from 5 to 15 minutes
of bilateral cerebral artery occlusion (BCAO). Another
issue in structure is defining clearly what phase of the
preconditioning is under investigation; local or remote,
classic or SWOP. Gene expression investigations can fo-

cus on the effect of challenge on gene expression in local
or remote tissue when compared to controls as well as
the altering effect of the challenge on the insult expres-
sion profile. Out of the 7 studies on the heart, 6 looked
at the effect of the challenge on gene expression whilst
only one investigation looked at the effect of challenge
in altering gene expression profile during the insult. In
the latter study the time period between the challenge
and the insult is not specified leaving unanswered the
issue of whether classic or second window of protection
was under study. Therefore, when studying the effect of
the challenge on the insult gene expression profile, the
timing between the challenge and the insult needs to
be clearly defined. There is also large variability in the
insult methods used. In the neuro studies the middle
cerebral artery occlusion (MCAO) occlusion challenge
varied from 45 to 60 minutes to permanent. Given the
limited number of microarray studies in preconditioning
it would be useful to focus on specific organs. Most of
the work has been carried out on the brain (14 studies)
and the heart (7 studies), undoubtedly due to the clin-
ical importance of myocardial infarction and stroke, the
commonest causes of death in western countries. Single
studies investigated blood, retina, lung, small intestines,
kidney and liver. Species variability included 14 studies
in rats, 10 in mice, 2 in humans and 1 in the rabbit.
Only two studies looked at the gene expression changes
secondary to preconditioning at a remote site.
3.2.3 Overwhelming information
The final complex factor is the inevitable information
overload generated by the advent of an ever-increasing
array of powerful data generating investigational tools
available for the researcher and which are constantly
evolving. Tools such as microarrays have generated tera-
bytes of data and as can be seen from table 1 the types
of arrays used and the number of genes investigated has
varied over time. This complicates the issue of data in-
tegration as well as the comparison of data with earlier
investigations. Another new technology, which is bound
to generate an even greater load of information, is next
generation sequencing. New discoveries such as epigen-
etics can become a potential contributor to informa-
tion overload. In fact, research into the epigenetics of
preconditioning has started to be published from 2013
(Thompson et al., 2013).

4 Conclusion
Complex systems in biology such as preconditioning
need a concerted effort in order to be deciphered. Sci-
entific approaches, such as systems biology, an inter-
disciplinary field of study that focuses on complex in-
teractions within biological systems, using a holistic ap-
proach as opposed to the more traditional reduction-
ism are essential. The study of preconditioning needs

10.7423/XJENZA.2020.1.01 www.xjenza.org

10.7423/XJENZA.2020.1.01
www.xjenza.org


12 Complex factors in preconditioning a microarray gene

a ‘systems thinking’ approach based on a set of habits
or practices facilitating the research in this field. This
review proposes a basic practice, that of a standard-
ized nomenclature and classification. The terms defined
included ‘phases’ of preconditioning, ‘challenge’ and ‘in-
sult’. Table 2 is a proposal of terms used to describe the
four phases of preconditioning. A clearer description
of the investigation should also be taken into considera-
tion. A definition from the outset of the model, whether
in vitro or in vivo, the species studied, the type of chal-
lenge and the challenge protocol whether it is single or
multiple episodes, form part of an essential approach
in understanding preconditioning. When it comes to
microarrays other essential issues include the design of
an experiment that looks into the genetic expression re-
sponse to the challenge, the genetic expression response
to the insult and how the challenge alters the genetic
response of the insult. Finally, time points such as the
interval between the challenge and the insult and the
interval between the challenge or insult and the gene
expression investigation should be clearly defined from
the outset.

References
Belosjorow, S., Schulz, R., Dörge, H., Schade, F. U. &

Heusch, G. (1999). Endotoxin and ischemic pre-
conditioning: TNF-α concentration and myocar-
dial infarct development in rabbits. Am J Physiol,
277 (H2470–5).

Benardete, E. A. & Bergold, P. (2009). Genomic analysis
of ischemic preconditioning in adult rat 3. hippo-
campal slice cultures. Brain Res, 1292, 107–122.

Bernaudin, M., Tang, Y., Reilly, M., Petit, E. & Sharp,
F. R. (2002). Brain genomic response following
hypoxia and re-oxygenation in the neonatal rat.
identification of genes that might contribute to
hypoxia-induced ischemic tolerance. J Biol Chem,
177, 39728–39738.

Billah, M., Ridiandres, A., Allahwala, U. et al. (2018).
Circulating mediators of remote ischemic precondi-
tioning: Search for the missing link between non-
lethal ischemia and cardioptotection. Oncotarget,
10, 216–244.

Bolli, R. (2000). The late phase of preconditioning.
Circle Res, 87, 972–983.

Borges, K., Shaw, R. & Dingledine, R. (2007). Gene
expression changes after seizure preconditioning in
the three major hippocampal cell layers. Neurobiol
Dis, 26, 66–77.

Calabrese, E. J. (2004). Hormesis: A revolution in toxic-
ology, risk assessment and medicine. EMBO reports
2004, 5 (suppl 1), S37–40.

Canatan, H. (2008). The effect of cardiac ischemic pre-
conditioning on rat left ventricular gene expression
profile. Cell Biochem Funct, 26, 179–184.

Carmel, J. B., Kakinohana, O., Mestril, R., Young, W.,
Marsala, M. & Hart, R. P. (2004). Mediators of
ischemic preconditioning identified by microarray
analysis of rat spinal cord. Exp Neurol, 185, 81–96.

Chen, W. J., Chen, H. W., Yu, S. L. et al. (2005). Gene
expression profiles in hypoxic preconditioning using
cDNA microarray analysis: Altered expression of an
angiogenic factor, carcinoembryonic antigen-related
cell adhesion molecule 1. Shock, 24, 124–131.

Correa-Costa, M., Azevedo, H., Amano, M. T.
et al. (2012). Transcriptome analysis of renal
ischemia/reperfusion injury and its modulation
by ischemic pre-conditioning or hemin treatment.
PLoS One, 7, e49569.

Costa, A. D., Garlid, K. D., West, I. C. et al. (2005).
Protein kinase G transmits the cardioprotective sig-
nal from cytosol to mitochondria. Circ Res, 97, 329–
336.

Dickson, E. W., Lorbar, M., Porcaro, W. A. et al. (1999).
Rabbit heart can be “preconditioned” via transfer
of coronary effluent. Am J Physiol, 227, H2451–
H2457.

Du, F., Zhu, L., Qian, Z. M., Wu, X. M., Yung, W. H.
& Ke, Y. (2010). Hyperthermic preconditioning
protects astrocytes from ischemia/reperfusion in-
jury by up-regulation of HIF-1 alpha expression
and binding activity. Biochim Biophys Acta, 1802,
1048–1053.

Feng, Z., Davis, D. P., Šášik, R., Patel, H. H., Drum-
mond, J. C. & Patel, P. M. (2007). Pathway and
gene ontology-based analysis of gene expression in
a rat model of cerebral ischemic tolerance. Brain
Res, 1177, 103–123.

Guo, Z. N., Guo, W. T., Liu, J. et al. (2019). Changes
in cerebral auto regulation and blood biomarkers
after remote ischemic preconditioning. Neurology,
93, e8–e19.

Gustavsson, M., Wilson, M. A., Mallard, C., Rousset,
C., Johnston, M. V. & Hagberg, H. (2007). Global
gene expression in the developing rat brain after
hypoxic preconditioning: Involvement of apoptotic
mechanisms? Pediatr Res, 61, 444–450.

Harralson, T., Grossi, F. V., Quan, E. E., Tecimer, T.
et al. (2005). Ischemic preconditioning of skeletal
muscle: Duration of late-phase protection. Ann
Plast Surg, 55(2), 216–222.

Hatazaki, S., Bellver-Estelles, C., Jimenez-Mateos,
E. M. et al. (2007). Microarray profile of seizure
damage-refractory hippocampal CA3 in a mouse
model of epileptic preconditioning. Neuroscience,
150, 467–477.

10.7423/XJENZA.2020.1.01 www.xjenza.org

10.7423/XJENZA.2020.1.01
www.xjenza.org


Complex factors in preconditioning a microarray gene 13

Hausenloy, D. J., Duchen, M. R. & Yellon, D. M. (2003).
Inhibiting mitochondrial permeability transition
pore opening at reperfusion protects against
ischaemia-reperfusion injury. Cardiovasc Res, 60,
617–625.

Himori, N., Moreau, J. L. & Martin, J. R. (1991).
Cerebral ischemia decreases the behavioral effects
and mortality rate elicited by activation of NMDA
receptors in mice. Neuropharmacology, 30, 1179–
1186.

Hirata, T., Cui, Y. J., Funakoshi, T. et al. (2007). The
temporal profile of genomic responses and protein
synthesis in ischemic tolerance of the rat brain in-
duced by repeated hyperbaric oxygen. Brain Res,
1130, 214–222.

Huang, P., Sun, Y., Yang, J. et al. (2013). The ERK1/2
signaling pathway is involved in sulfur dioxide
preconditioning-induced protection against cardiac
dysfunction in isolated perfused rat heart subjected
to myocardial ischemia/reperfusion. Int J Mol Sci,
14, 22190–22201.

Huber, R., Kasischke, K., Ludolph, A. C. & Riepe,
M. W. (1999). Increase of cellular hypoxic tolerance
by erythromycin and other antibiotics. Neuroreport,
10, 1543–1546.

Huda, R., Chung, D. H. & Mathru, M. (2005). Ischemic
preconditioning at a distance: Altered gene expres-
sion in mouse heart and other organs following brief
occlusion of the mesenteric artery. Heart Lung Circ,
14, 36–43.

Ito, K., Ozasa, H., Sanada, K. & Horikawa, S. (2000).
Doxorubicin preconditioning: A protection against
rat hepatic ischemia-reperfusion injury. Hepatology,
31, 416–419.

Jassem, W., Fuggle, S., Thompson, R. et al. (2009). Ef-
fect of ischemic preconditioning on the genomic re-
sponse to reperfusion injury in deceased donor liver
transplantation. Liver Transpl, 15, 1750–1765.

Jun, N., Ke, J., Gang, C., Lin, C., Jinsong, L. & Jianjun,
W. (2011). The protective effect of ischemic precon-
ditioning associated with altered gene expression
profiles in rat lung after reperfusion. J Surg Res,
168, 281–293.

Kamphuis, W., Dijk, F. & Bergen, A. A. (2007).
Ischemic preconditioning alters the pattern of
gene expression changes in response to full retinal
ischemia. Mol Vis, 13, 1892–1901.

Kawahara, N., Wang, Y., Mukasa, A. et al. (2004).
Genome-wide gene expression analysis for induced
ischemic tolerance and delayed neuronal death fol-
lowing transient global ischemia in rats. J Cereb
Blood Flow Metab, 24, 212–223.

Kim, K. O., Choe, G., Chung, S. H. & Kim, C. S. (2008).
Delayed pharmacological pre-conditioning effect

of mitochondrial atp-sensitive potassium channel
opener on neurologic injury in a rabbit model of
spinal cord ischemia. Acta Anaesthesiol Scand, 52,
236–242.

Kitagawa, K., Matsumoto, M., Tagaya, M. et al.
(1990). ‘ischemic tolerance’ phenomenon found in
the brain. Brain Res, 528, 21–24.

Kobayashi, S., Harris, V. A. & Welsh, F. A. (1995).
Spreading depression induces tolerance of cortical
neurons to ischemia in rat brain. J Cereb Blood Flow
Metab, 15, 721–727.

Konstantinov, I. E., Arab, S., Kharbanda, R. K. et al.
(2004). The remote ischemic preconditioning stim-
ulus modifies inflammatory gene expression in hu-
mans. Physiol Genomics, 19, 143–150.

Krenz, M., Baines, C., Kalogeris, T. & Korthuis, R.
(2013). Cell survival programs and ischemia/reper-
fusion: Hormesis, preconditioning, and cardiopro-
tection. Colloquium Series on Integrated Systems
Physiology: From Molecule to Function, 5:3, 1–122.

Leung, C. H., Wang, L., Nielsen, J. M. et al. (2014).
Remote cardioprotection by transfer of coronary
effluent from ischemic preconditioned rabbit heart
preserves mitochondrial integrity and function via
adenosine receptor activation. Cardiovasc Drugs
Ther, 28, 7–17.

Lim, S. Y., Yellon, D. M. & Hausenloy, D. J. (2010).
The neural and humoral pathways in remote limb
ischemic preconditioning. Basic Res Cardiol.

Loukogeorgakis, S. P., Panagiotidou, A. ., Broadhead,
M. W., Donald, A., Deanfield, J. E. & MacAl-
lister, R. J. (2005). Remote ischemic precondition-
ing provides early and late protection against en-
dothelial ischemia-reperfusion injury in humans:
Role of the autonomic nervous system. J Am Coll
Cardiol, 46, 450–456.

Lusardi, T. A., Farr, C. D., Faulkner, C. L. et al.
(2010). Ischemic preconditioning regulates expres-
sion of microRNAs and a predicted target, MeCP2,
in mouse cortex. J Cereb Blood Flow Metab, 30,
744–756.

Marsh, B., Stevens, S. L., Packard, A. E. B. et al.
(2009). Systemic lipopolysaccharide protects the
brain from ischemic injury by reprogramming the
response of the brain to stroke: A critical role for
IRF3. J Neurosci, 29, 9839–9849.

Marsh, B. J., Stevens, S. L., Hunter, B. & Stenzel-
Poore, M. P. (2009). Inflammation and the emer-
ging role of the toll-like receptor system in acute
brain ischemia. Stroke, 40, S34–S37.

Moncayo, J., de Freitas, G. R., Bogousslavsky, J., Al-
tieri, M. & van Melle, G. (2000). Do transient
ischemic attacks have a neuroprotective effect?
Neurology, 54, 2089–2094.

10.7423/XJENZA.2020.1.01 www.xjenza.org

10.7423/XJENZA.2020.1.01
www.xjenza.org


14 Complex factors in preconditioning a microarray gene

Moses, M. A., Addison, P. D., Neligan, P. C. et al.
(2005). Inducing late phase of infarct protection in
skeletal muscle by remote preconditioning: Efficacy
and mechanism. Am J Physiol Regul Integr Comp
Physiol, 289, R1609–R1617.

Murphy, E. & Steenbergen, C. (2008). Mechanisms un-
derlying acute protection from cardiac ischemia-
reperfusion injury. Physiol Rev, 88, 581–609.

Murry, C. E., Jennings, R. B. & Reimer, K. A. (1986).
Preconditioning with ischemia: A delay of lethal
cell injury in ischemic myocardium. Circulation, 74,
1124.

Nishio, S., Yunoki, M., Chen, Z. F., Anzivino, M. J.
& Lee, K. S. (2000). Ischemic tolerance in the rat
neocortex following hypothermic preconditioning. J
Neurosurg, 93, 845–851.

Ónody, A., Zvara, Á., Hackler, L., Vígh, L., Ferdinandy,
P. & G Puskás, L. (2003). Effect of classic precondi-
tioning on the gene expression pattern of rat hearts:
A DNA microarray study. FEBS letters, 536, 35–40.

Ostrowski, R. P., Graupner, G., Titova, E., Zhang, J. et
al. (2008). The hyperbaric oxygen preconditioning-
induced brain protection is mediated by a reduc-
tion of early apoptosis after transient global cereb-
ral ischemia. Neurobiol Dis, 29, 1–13.

Pastor, V., Luna, E., Mauch-Mani, B., Ton, J. & Flors,
V. (2013). Primed plants do not forget. Environ Exp
Bot, 94, 46–56.

Prasad, S. S., Russell, M., Nowakowska, M., Williams,
A. & Yauk, C. (2012). Gene expression analysis
to identify molecular correlates of pre- and post-
conditioning derived neuroprotection. J Mol Neur-
osci, 47, 322–339.

Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A. &
Whittaker, P. (1993). Regional ischemic ‘precondi-
tioning’ protects remote virgin myocardium from
subsequent sustained coronary occlusion. Circula-
tion, 87, 893–899.

Raza, A., Dikdan, G., Desai, K. K. et al. (2010). Global
gene expression profiles of ischemic precondition-
ing in deceased donor liver transplantation. Liver
Transpl, 16, 588–599.

Riepe, M. W., Kasischke, K. & Raupach, A. (1997).
Acetylsalicylic acid increases tolerance against hyp-
oxic and chemical hypoxia. Stroke, 28, 2006–2011.

Riepe, M. W., Niemi, W. N., Megow, D., Ludolph, A. C.
& Carpenter, D. O. (1996). Mitochondrial oxida-
tion in rat hippocampus can be preconditioned by
selective chemical inhibition of succinic dehydro-
genase. Exp Neurol, 138, 15–21.

Rosenzweig, H. L., Minami, M., Lessov, N. S. et al.
(2007). Endotoxin preconditioning protects against
the cytotoxic effects of TNFalpha after stroke: A

novel role for TNFalpha in LPS-ischemic tolerance.
J Cereb Blood Flow Metab, 27, 1663–1674.

Sasahira, M., Lowry, T., Simon, R. P. & Greenberg,
D. A. (1995). Epileptic tolerance: Prior seizures pro-
tect against seizure-induced neuronal injury. Neur-
osci Lett, 185, 95–98.

Schultz, J. E., Rose, E., Yao, Z. & Gross, G. J.
(1995). Evidence for involvement of opioid recept-
ors in ischemic preconditioning in rat hearts. Am J
Physiol, 268, H2157–H2161.

Serejo, F. C., Rodrigues, L. F. J., da Silva Tavares,
K. C., de Carvalho, A. C. C. & Nascimento,
J. H. M. (2007). Cardioprotective properties of
humoral factors released from rat hearts subject to
ischemic preconditioning. J Cardiovasc Pharmacol,
49, 214.

Sergeev, P., da Silva, E., R. Lucchinetti et al. (2004).
Trigger-dependent gene expression profiles in car-
diac preconditioning: Evidence for distinct genetic
programs in ischemic and anesthetic precondition-
ing. Anesthesiology, 100, 474–488.

Shimizu, M., Tropak, M., Diaz, R. J. et al. (2009).
Transient limb ischaemia remotely preconditions
through a humoral mechanism acting directly on
the myocardium: Evidence suggesting cross-species
protection. Clin Sci (Lond), 117, 191–200.

Simkhovich, B. Z., Abdishoo, S., Poizat, C., Hale, S. L.,
Kedes, L. H. & Kloner, R. A. (2002). Gene activity
changes in ischemically reconditioned rabbit heart
gene: Discovery array study. Heart Dis, 4, 63–69.

Southam, C. M. & Ehrlich, J. (1943). Effects of extracts
of western red-cedar heartwood on certain wood-
decaying fungi in culture. Phytopathology, 33, 517–
524.

Stein, A. B., Bolli, R., Guo, Y. et al. (2007). The late
phase of ischemic preconditioning induces a prosur-
vival genetic program that results in marked atten-
uation of apoptosis. J Mol Cell Cardiol, 42, 1075–
1085.

Stenzel-Poore, M. P., Stevens, S. L., Xiong, Z. et al.
(2003). Effect of ischaemic preconditioning on ge-
nomic response to cerebral ischaemia: Similarity
to neuroprotective strategies in hibernation and
hypoxia-tolerant states. The Lancet, 362, 1028–
1037.

Tang, Y., Pacary, E., Fréret, T. et al. (2006). Effect of
hypoxic preconditioning on brain genomic response
before and following ischemia in the adult mouse:
Identification of potential neuroprotective candid-
ates for stroke. Neurobiol Dis, 21, 18–28.

Thompson, J. W., Dave, K. R., Young, J. I. & Perez-
Pinzon, M. A. (2013). Ischemic preconditioning al-
ters the epigenetic profile of the brain from ischemic

10.7423/XJENZA.2020.1.01 www.xjenza.org

10.7423/XJENZA.2020.1.01
www.xjenza.org


Complex factors in preconditioning a microarray gene 15

intolerance to ischemic tolerance. Neurotherapeut-
ics, 10, 789–797.

Thornton, J., Striplin, S., Liu, G. S. et al. (1990). Inhib-
ition of protein synthesis does not block myocar-
dial protection afforded by preconditioning. Am J
Physiol, 259, H1822:H1825.

Tsukamoto, O., Asanuma, H., Kim, J. et al. (2005). A
role of opening of mitochondrial ATP-sensitive po-
tassium channels in the infarct size-limiting effect
of ischemic preconditioning via activation of pro-
tein kinase C in the canine heart. Biochem Biophys
Res Commun, 338, 1460–1466.

Vk, D., Sailor, K. A. & Bowen, K. K. (2004). Putative
endogenous mediators of preconditioning-induced
ischemic tolerance in rat brain identified by gen-
omic and proteomic analysis. J Neurochem, 89, 73–
89.

Wall, T. M., Sheehy, R. & Hartman, J. C. (1994). Role of
bradykinin in myocardial preconditioning. J Phar-
macol Exp Ther, 270, 681–689.

Wang, S., Fan, L., Gao, K. & Li, G. (2009). The pro-
tective effect of ischemic preconditioning associated
with altered gene expression profiles in intestinal
grafts after reperfusion. J Surg Res, 153, 340–346.

Yang, X., Xin, W., Yang, X. M. et al. (2011). A2B aden-
osine receptors inhibit superoxide production from
mitochondrial complex I in rabbit cardiomyocytes
via a mechanism sensitive to Pertussis toxin. Br J
Pharmacol, 163, 995–1006.

Yang, X. M., Baxter, G. F., Heads, R. J., Yellon, D. M.,
Downey, J. M. & Cohen, M. V. (1996). Infarct lim-
itation of the second window of protection in a con-
scious rabbit model. Cardiovasc Res, 31, 777–783.

Yellon, D. M. & Baxter, G. F. (1995). A “second win-
dow of protection” or delayed preconditioning phe-
nomenon: Future horizons for myocardial protec-
tion? J Mol Cell Cardiol, 27, 1023–1024.

Yu, Z. F. & Mattson, M. P. (1999). Dietary restric-
tion and 2-deoxyglucose administration reduce fo-
cal ischemic brain damage and improve behavioral
outcome: Evidence for a preconditioning mechan-
ism. J Neurosci Res, 57, 830–839.

10.7423/XJENZA.2020.1.01 www.xjenza.org

10.7423/XJENZA.2020.1.01
www.xjenza.org

	Introduction
	Preconditioning, gene expression and microarrays
	Complex factors in preconditioning
	Intrinsic Factors
	Wide spectrum of challenges
	Bi-temporal nature
	Spatial element

	Extrinsic factors
	Classification and terminology
	Diverse investigational design
	Overwhelming information


	Conclusion

